细胞凋亡
聚ADP核糖聚合酶
生存素
活力测定
膜联蛋白
生物
程序性细胞死亡
分子生物学
癌细胞
Fas配体
癌症研究
细胞生物学
化学
癌症
生物化学
聚合酶
基因
遗传学
作者
Bokyung Sung,Yong Jung Kang,Dong Hwan Kim,Seong Yeon Hwang,Yujin Lee,Min Jeong Kim,Jeong‐Hyun Yoon,Cheol Min Kim,Hae Young Chung,Nam Deuk Kim
标识
DOI:10.3892/ijmm.2014.1639
摘要
Corosolic acid (CA), a pentacyclic triterpene isolated from Lagerstroemia speciosa L. (also known as Banaba), has been shown to exhibit anticancer properties in various cancer cell lines. However, the anticancer activity of CA on human colorectal cancer cells and the underlying mechanisms remain to be elucidated. In this study, we investigated the effects of CA on cell viability and apoptosis in HCT116 human colon cancer cells. CA dose-dependently inhibited the viability of HCT116 cells. The typical hallmarks of apoptosis, such as chromatin condensation, a sub-G1 peak and phosphatidylserine externalization were detected by Hoechst 33342 staining, flow cytometry and Annexin V staining following treatment with CA. Western blot analysis revealed that CA induced a decrease in the levels of procaspase-8, -9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). The apoptotic cell death induced by CA was accompanied by the activation of caspase-8, -9 and -3, which was completely abrogated by the pan-caspase inhibitor, z-VAD‑FMK. Furthermore, CA upregulated the levels of pro-apoptotic proteins, such as Bax, Fas and FasL and downregulated the levels of anti-apoptotic proteins, such as Bcl-2 and survivin. Taken together, our data provide insight into the molecular mechanisms of CA-induced apoptosis in colorectal cancer (CRC), rendering this compound a potential anticancer agent for the treatment of CRC.
科研通智能强力驱动
Strongly Powered by AbleSci AI