单变量
动力系数
计量经济学
主成分分析
经济
扩散
系列(地层学)
统计
向量自回归
时间序列
变量(数学)
计算机科学
索引(排版)
数学
物理
热力学
作者
James H. Stock,Mark W. Watson
标识
DOI:10.1198/073500102317351921
摘要
This article studies forecasting a macroeconomic time series variable using a large number of predictors. The predictors are summarized using a small number of indexes constructed by principal component analysis. An approximate dynamic factor model serves as the statistical framework for the estimation of the indexes and construction of the forecasts. The method is used to construct 6-, 12-, and 24-monthahead forecasts for eight monthly U.S. macroeconomic time series using 215 predictors in simulated real time from 1970 through 1998. During this sample period these new forecasts outperformed univariate autoregressions, small vector autoregressions, and leading indicator models.
科研通智能强力驱动
Strongly Powered by AbleSci AI