子叶
生物
突变体
基因
基因组
遗传学
假基因
拟南芥
全基因组测序
植物
作者
Michiharu Nakano,Tetsuya Yamada,Yu Masuda,Yutaka Sato,Hideki Kobayashi,Hiroaki Ueda,Ryouhei Morita,Minoru Nishimura,Keisuke Kitamura,Makoto Kusaba
出处
期刊:Plant and Cell Physiology
[Oxford University Press]
日期:2014-08-09
卷期号:55 (10): 1763-1771
被引量:29
摘要
The recent whole-genome sequencing of soybean (Glycine max) revealed that soybean experienced whole-genome duplications 59 million and 13 million years ago, and it has an octoploid-like genome in spite of its diploid nature. We analyzed a natural green-cotyledon mutant line, Tenshin-daiseitou. The physiological analysis revealed that Tenshin-daiseitou shows a non-functional stay-green phenotype in senescent leaves, which is similar to that of the mutant of Mendel's green-cotyledon gene I, the ortholog of SGR in pea. The identification of gene mutations and genetic segregation analysis suggested that defects in GmSGR1 and GmSGR2 were responsible for the green-cotyledon/stay-green phenotype of Tenshin-daiseitou, which was confirmed by RNA interference (RNAi) transgenic soybean experiments using GmSGR genes. The characterized green-cotyledon double mutant d1d2 was found to have the same mutations, suggesting that GmSGR1 and GmSGR2 are D1 and D2. Among the examined d1d2 strains, the d1d2 strain K144a showed a lower Chl a/b ratio in mature seeds than other strains but not in senescent leaves, suggesting a seed-specific genetic factor of the Chl composition in K144a. Analysis of the soybean genome sequence revealed four genomic regions with microsynteny to the Arabidopsis SGR1 region, which included the GmSGR1 and GmSGR2 regions. The other two regions contained GmSGR3a/GmSGR3b and GmSGR4, respectively, which might be pseudogenes or genes with a function that is unrelated to Chl degradation during seed maturation and leaf senescence. These GmSGR genes were thought to be produced by the two whole-genome duplications, and they provide a good example of such whole-genome duplication events in the evolution of the soybean genome.
科研通智能强力驱动
Strongly Powered by AbleSci AI