A comparison of normalization methods for high density oligonucleotide array data based on variance and bias

生物导体 规范化(社会学) 计算机科学 R包 数据挖掘 软件 算法 线性比例尺 统计 模式识别(心理学) 数学 人工智能 生物化学 化学 大地测量学 社会学 人类学 基因 程序设计语言 地理
作者
Benjamin M. Bolstad,Rafael A. Irizarry,Magnus Åstrand,Terence P. Speed
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:19 (2): 185-193 被引量:8050
标识
DOI:10.1093/bioinformatics/19.2.185
摘要

Abstract Motivation: When running experiments that involve multiple high density oligonucleotide arrays, it is important to remove sources of variation between arrays of non-biological origin. Normalization is a process for reducing this variation. It is common to see non-linear relations between arrays and the standard normalization provided by Affymetrix does not perform well in these situations. Results: We present three methods of performing normalization at the probe intensity level. These methods are called complete data methods because they make use of data from all arrays in an experiment to form the normalizing relation. These algorithms are compared to two methods that make use of a baseline array: a one number scaling based algorithm and a method that uses a non-linear normalizing relation by comparing the variability and bias of an expression measure. Two publicly available datasets are used to carry out the comparisons. The simplest and quickest complete data method is found to perform favorably. Availability: Software implementing all three of the complete data normalization methods is available as part of the R package Affy, which is a part of the Bioconductor project http://www.bioconductor.org. Contact: bolstad@stat.berkeley.edu. Supplementary information: Additional figures may be found at http://www.stat.berkeley.edu/~bolstad/normalize/index.html * To whom correspondence should be addressed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助chengxue采纳,获得10
刚刚
扎心应助无风海采纳,获得10
1秒前
小文cremen发布了新的文献求助10
2秒前
YANA完成签到,获得积分10
2秒前
Santiago完成签到,获得积分10
3秒前
阳光的静白完成签到,获得积分10
3秒前
英俊的铭应助dllz采纳,获得10
4秒前
天天快乐应助觅海采纳,获得10
6秒前
7秒前
LHX关注了科研通微信公众号
7秒前
法官大人完成签到 ,获得积分20
9秒前
潇洒飞丹发布了新的文献求助10
10秒前
酷波er应助Aline采纳,获得10
11秒前
11秒前
科目三应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
Hayat应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
14秒前
火星上牛青完成签到,获得积分10
14秒前
15秒前
15秒前
无花果应助小文cremen采纳,获得10
16秒前
爱打工的帕鲁完成签到 ,获得积分10
16秒前
17秒前
卿欣完成签到 ,获得积分10
17秒前
17秒前
积极荆发布了新的文献求助10
17秒前
LHX发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959245
求助须知:如何正确求助?哪些是违规求助? 3505545
关于积分的说明 11124398
捐赠科研通 3237291
什么是DOI,文献DOI怎么找? 1789026
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824