A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols

成像体模 核医学 灌注扫描 计算机科学 灌注 迭代重建 图像质量 医学 扫描仪 医学影像学 生物医学工程 体素 断层摄影术 放射科 衰减校正
作者
Rieneke van den Boom,Rashindra Manniesing,Marcel T. H. Oei,Willem-Jan van der Woude,Ewoud J. Smit,Hendrik Laue,Bram van Ginneken,Mathias Prokop
出处
期刊:Medical Physics [Wiley]
卷期号:41 (7): 071907- 被引量:3
标识
DOI:10.1118/1.4881520
摘要

Purpose: Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data, and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters. The authors expand this idea by using realistic noise patterns and measured tissue attenuation curves representing patient-specific hemodynamics. The purpose of this work is to validate that this approach can realistically simulate mean perfusion values and noise on perfusion data for individual patients. Methods: The proposed 4D digital phantom consists of three major components: (1) a definition of the spatial structure of various brain tissues within the phantom, (2) measured tissue attenuation curves, and (3) measured noise patterns. Tissue attenuation curves were measured in patient data using regions of interest in gray matter and white matter. By assigning the tissue attenuation curves to the corresponding tissue curves within the phantom, patient-specific CTP acquisitions were retrospectively simulated. Noise patterns were acquired by repeatedly scanning an anthropomorphic skull phantom at various exposure settings. The authors selected 20 consecutive patients that were scanned for suspected ischemic stroke and constructed patient-specific 4D digital phantoms using the individual patients’ hemodynamics. The perfusion maps of the patient data were compared with the digital phantom data. Agreement between phantom- and patient-derived data was determined for mean perfusion values and for standard deviation in de perfusion data using intraclass correlation coefficients (ICCs) and a linear fit. Results: ICCs ranged between 0.92 and 0.99 for mean perfusion values. ICCs for the standard deviation in perfusion maps were between 0.86 and 0.93. Linear fitting yielded slope values between 0.90 and 1.06. Conclusions: A patient-specific 4D digital phantom allows for realistic simulation of mean values and standard deviation in perfusion data and makes it possible to retrospectively study how the interaction of patient hemodynamics and scan parameters affects CT perfusion values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛夷发布了新的文献求助10
刚刚
SciGPT应助chengxiong采纳,获得10
1秒前
mmain发布了新的文献求助10
2秒前
2秒前
敬老院N号应助LIBin采纳,获得30
3秒前
3秒前
liamddd完成签到 ,获得积分10
3秒前
4秒前
蕴蝶完成签到,获得积分10
5秒前
达瓦里氏发布了新的文献求助10
5秒前
小蘑菇应助炙热静枫采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
bu拿下PHD绝不回头完成签到,获得积分10
11秒前
11秒前
香蕉觅云应助sun采纳,获得10
12秒前
SciGPT应助霜穿积晴采纳,获得10
15秒前
xiaobai应助科研通管家采纳,获得10
17秒前
lilivite应助科研通管家采纳,获得20
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
xiaobai应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
内向千筹应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
酷酷盼秋应助duohao2023采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
19秒前
大个应助苏乘风采纳,获得20
19秒前
顺利完成签到,获得积分10
20秒前
笨笨从凝完成签到,获得积分10
20秒前
22秒前
Sakura_Chloe完成签到,获得积分20
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453696
求助须知:如何正确求助?哪些是违规求助? 4561241
关于积分的说明 14281357
捐赠科研通 4485225
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447276
关于科研通互助平台的介绍 1422687