A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols

成像体模 核医学 灌注扫描 计算机科学 灌注 迭代重建 图像质量 医学 扫描仪 医学影像学 生物医学工程 体素 断层摄影术 放射科 衰减校正
作者
Rieneke van den Boom,Rashindra Manniesing,Marcel T. H. Oei,Willem-Jan van der Woude,Ewoud J. Smit,Hendrik Laue,Bram van Ginneken,Mathias Prokop
出处
期刊:Medical Physics [Wiley]
卷期号:41 (7): 071907- 被引量:3
标识
DOI:10.1118/1.4881520
摘要

Purpose: Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data, and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters. The authors expand this idea by using realistic noise patterns and measured tissue attenuation curves representing patient-specific hemodynamics. The purpose of this work is to validate that this approach can realistically simulate mean perfusion values and noise on perfusion data for individual patients. Methods: The proposed 4D digital phantom consists of three major components: (1) a definition of the spatial structure of various brain tissues within the phantom, (2) measured tissue attenuation curves, and (3) measured noise patterns. Tissue attenuation curves were measured in patient data using regions of interest in gray matter and white matter. By assigning the tissue attenuation curves to the corresponding tissue curves within the phantom, patient-specific CTP acquisitions were retrospectively simulated. Noise patterns were acquired by repeatedly scanning an anthropomorphic skull phantom at various exposure settings. The authors selected 20 consecutive patients that were scanned for suspected ischemic stroke and constructed patient-specific 4D digital phantoms using the individual patients’ hemodynamics. The perfusion maps of the patient data were compared with the digital phantom data. Agreement between phantom- and patient-derived data was determined for mean perfusion values and for standard deviation in de perfusion data using intraclass correlation coefficients (ICCs) and a linear fit. Results: ICCs ranged between 0.92 and 0.99 for mean perfusion values. ICCs for the standard deviation in perfusion maps were between 0.86 and 0.93. Linear fitting yielded slope values between 0.90 and 1.06. Conclusions: A patient-specific 4D digital phantom allows for realistic simulation of mean values and standard deviation in perfusion data and makes it possible to retrospectively study how the interaction of patient hemodynamics and scan parameters affects CT perfusion values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyy完成签到,获得积分10
刚刚
活泼宛海发布了新的文献求助10
刚刚
风吹完成签到,获得积分10
刚刚
1秒前
得意忘言完成签到,获得积分10
1秒前
今后应助能干的元风采纳,获得10
1秒前
泡菜鱼oo发布了新的文献求助30
2秒前
难过的溪流完成签到 ,获得积分10
2秒前
无语的沛春完成签到,获得积分10
2秒前
清爽的梦秋完成签到,获得积分10
3秒前
afeifei完成签到,获得积分10
3秒前
Hightowerliu18完成签到,获得积分0
3秒前
4秒前
小葵完成签到,获得积分10
4秒前
科研小白完成签到,获得积分10
4秒前
Pw完成签到,获得积分10
4秒前
HAO完成签到,获得积分10
5秒前
yongzaizhuigan完成签到,获得积分10
5秒前
兴奋的天蓉完成签到 ,获得积分10
5秒前
6秒前
传奇3应助Shaw采纳,获得10
6秒前
wanci应助元谷雪采纳,获得10
7秒前
whuyyz完成签到,获得积分10
7秒前
zhuding1978完成签到,获得积分10
7秒前
7秒前
逗逗完成签到,获得积分10
7秒前
空白格完成签到 ,获得积分10
7秒前
7秒前
SilverPlane完成签到,获得积分10
8秒前
Rainlistener应助科研通管家采纳,获得10
8秒前
xfy应助科研通管家采纳,获得10
8秒前
感动水杯完成签到 ,获得积分10
9秒前
9秒前
Rainlistener应助科研通管家采纳,获得10
9秒前
Rainlistener应助科研通管家采纳,获得10
9秒前
冷漠的布丁完成签到,获得积分10
9秒前
9秒前
搜集达人应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197