亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A critical review of forest biomass estimation models, common mistakes and corrective measures

估计 生物量(生态学) 环境科学 生态学 农林复合经营 计量经济学 经济 生物 管理
作者
Gudeta W. Sileshi
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:329: 237-254 被引量:231
标识
DOI:10.1016/j.foreco.2014.06.026
摘要

Abstract The choice of biomass estimation models (BEMs) is one of the most important sources of uncertainty in quantifying forest biomass and carbon fluxes. This review was motivated by many mistakes and pitfalls I encountered in the recent literature regarding BEMs. The most common mistakes were the arbitrary choice of analytical methods, model dredging and inadequate model diagnosis, ignoring collinearity, uncritical use of model selection criteria and uninformative reporting of results. Sometimes, errors in parameter estimates were not checked and model uncertainty was ignored when interpreting and reporting results. Consequently, biologically implausible and statistically dubious equations such as ln ( M ) =  ln ( a ) +  b ( lnD ) +  c ( lnD ) 2  +  d ( lnD ) 3  +  e ( lnρ ) have been published as allometric models. These are perpetuated in the literature, databases and field manuals and will pose a serious threat to the integrity of future forest biomass estimates. Through worked examples, I also illustrate that (1) allometric coefficients can be biased by the choice of analytical procedures and methodological artefacts; (2) collinearity of predictors can result in coefficients with unacceptable levels of error; (3) the R 2 and Akaike information criterion (AIC) have been misused and have resulted in the selection of implausible BEMs; and (4) differences in the definition of model “bias” has sometimes led to contradictory reports. I propose corrective measures for most of these problems and provide suggestions for prospective authors on how to avoid pitfalls in interpretation and reporting of results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研通管家采纳,获得10
3秒前
无题完成签到,获得积分10
3秒前
9秒前
14秒前
20秒前
古夕完成签到,获得积分10
28秒前
adefq完成签到,获得积分10
30秒前
34秒前
56秒前
57秒前
南宫硕完成签到 ,获得积分10
1分钟前
1分钟前
linl完成签到,获得积分10
1分钟前
1分钟前
1分钟前
linl发布了新的文献求助10
1分钟前
柯语雪完成签到,获得积分10
1分钟前
1分钟前
1分钟前
李健的粉丝团团长应助Czl采纳,获得10
2分钟前
2分钟前
瘪良科研发布了新的文献求助10
2分钟前
Orange应助bird采纳,获得10
2分钟前
2分钟前
rrr完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
瘪良科研完成签到,获得积分10
2分钟前
Czl发布了新的文献求助10
2分钟前
史前巨怪完成签到,获得积分0
2分钟前
2分钟前
2分钟前
果酱完成签到,获得积分10
2分钟前
称心的高丽完成签到 ,获得积分10
3分钟前
树脂小柴发布了新的文献求助10
3分钟前
3分钟前
Sandy发布了新的文献求助10
3分钟前
树脂小柴完成签到,获得积分10
3分钟前
3分钟前
蘇q完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723535
求助须知:如何正确求助?哪些是违规求助? 5278836
关于积分的说明 15298864
捐赠科研通 4871973
什么是DOI,文献DOI怎么找? 2616415
邀请新用户注册赠送积分活动 1566241
关于科研通互助平台的介绍 1523131