亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A critical review of forest biomass estimation models, common mistakes and corrective measures

估计 生物量(生态学) 环境科学 生态学 农林复合经营 计量经济学 经济 生物 管理
作者
Gudeta W. Sileshi
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:329: 237-254 被引量:231
标识
DOI:10.1016/j.foreco.2014.06.026
摘要

Abstract The choice of biomass estimation models (BEMs) is one of the most important sources of uncertainty in quantifying forest biomass and carbon fluxes. This review was motivated by many mistakes and pitfalls I encountered in the recent literature regarding BEMs. The most common mistakes were the arbitrary choice of analytical methods, model dredging and inadequate model diagnosis, ignoring collinearity, uncritical use of model selection criteria and uninformative reporting of results. Sometimes, errors in parameter estimates were not checked and model uncertainty was ignored when interpreting and reporting results. Consequently, biologically implausible and statistically dubious equations such as ln ( M ) =  ln ( a ) +  b ( lnD ) +  c ( lnD ) 2  +  d ( lnD ) 3  +  e ( lnρ ) have been published as allometric models. These are perpetuated in the literature, databases and field manuals and will pose a serious threat to the integrity of future forest biomass estimates. Through worked examples, I also illustrate that (1) allometric coefficients can be biased by the choice of analytical procedures and methodological artefacts; (2) collinearity of predictors can result in coefficients with unacceptable levels of error; (3) the R 2 and Akaike information criterion (AIC) have been misused and have resulted in the selection of implausible BEMs; and (4) differences in the definition of model “bias” has sometimes led to contradictory reports. I propose corrective measures for most of these problems and provide suggestions for prospective authors on how to avoid pitfalls in interpretation and reporting of results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Muhammad发布了新的文献求助10
1秒前
maher完成签到,获得积分10
3秒前
6秒前
11秒前
艺玲发布了新的文献求助10
12秒前
赣南橙发布了新的文献求助10
16秒前
22秒前
Muhammad发布了新的文献求助10
27秒前
29秒前
烂漫的绿茶完成签到 ,获得积分10
31秒前
35秒前
赣南橙完成签到,获得积分10
38秒前
雨相所至发布了新的文献求助10
40秒前
光亮梦松发布了新的文献求助10
47秒前
雨相所至完成签到,获得积分10
59秒前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
苹果颖发布了新的文献求助10
1分钟前
我爱科研完成签到,获得积分10
1分钟前
Michaelialzm完成签到,获得积分10
1分钟前
1分钟前
Mark_He发布了新的文献求助10
1分钟前
大气的玉米完成签到 ,获得积分10
1分钟前
nhzz2023完成签到 ,获得积分0
2分钟前
共享精神应助光亮梦松采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
船长完成签到,获得积分10
2分钟前
2分钟前
2分钟前
苹果颖发布了新的文献求助10
2分钟前
Orange应助HaonanZhang采纳,获得10
2分钟前
2分钟前
苹果颖完成签到,获得积分10
2分钟前
雪白砖家完成签到 ,获得积分10
2分钟前
2分钟前
生椰拿铁完成签到 ,获得积分10
2分钟前
香樟沐雪发布了新的文献求助10
2分钟前
无韶的月亮树完成签到,获得积分10
3分钟前
慕新完成签到,获得积分10
3分钟前
邓倩完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554741
求助须知:如何正确求助?哪些是违规求助? 4639342
关于积分的说明 14656067
捐赠科研通 4581239
什么是DOI,文献DOI怎么找? 2512662
邀请新用户注册赠送积分活动 1487403
关于科研通互助平台的介绍 1458322