A critical review of forest biomass estimation models, common mistakes and corrective measures

估计 生物量(生态学) 环境科学 生态学 农林复合经营 计量经济学 经济 生物 管理
作者
Gudeta W. Sileshi
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:329: 237-254 被引量:231
标识
DOI:10.1016/j.foreco.2014.06.026
摘要

Abstract The choice of biomass estimation models (BEMs) is one of the most important sources of uncertainty in quantifying forest biomass and carbon fluxes. This review was motivated by many mistakes and pitfalls I encountered in the recent literature regarding BEMs. The most common mistakes were the arbitrary choice of analytical methods, model dredging and inadequate model diagnosis, ignoring collinearity, uncritical use of model selection criteria and uninformative reporting of results. Sometimes, errors in parameter estimates were not checked and model uncertainty was ignored when interpreting and reporting results. Consequently, biologically implausible and statistically dubious equations such as ln ( M ) =  ln ( a ) +  b ( lnD ) +  c ( lnD ) 2  +  d ( lnD ) 3  +  e ( lnρ ) have been published as allometric models. These are perpetuated in the literature, databases and field manuals and will pose a serious threat to the integrity of future forest biomass estimates. Through worked examples, I also illustrate that (1) allometric coefficients can be biased by the choice of analytical procedures and methodological artefacts; (2) collinearity of predictors can result in coefficients with unacceptable levels of error; (3) the R 2 and Akaike information criterion (AIC) have been misused and have resulted in the selection of implausible BEMs; and (4) differences in the definition of model “bias” has sometimes led to contradictory reports. I propose corrective measures for most of these problems and provide suggestions for prospective authors on how to avoid pitfalls in interpretation and reporting of results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
细心伟宸发布了新的文献求助10
1秒前
2秒前
英俊的铭应助zxw采纳,获得10
2秒前
GuMingyang完成签到,获得积分10
2秒前
1335804518完成签到,获得积分10
3秒前
12等等完成签到,获得积分10
3秒前
赵李奕安发布了新的文献求助10
5秒前
星星气球发布了新的文献求助50
5秒前
李小伟发布了新的文献求助10
6秒前
自信乐菱发布了新的文献求助10
6秒前
ABS发布了新的文献求助10
6秒前
9秒前
袁东完成签到,获得积分10
9秒前
wanci应助阳光采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
共享精神应助折镜采纳,获得10
11秒前
12秒前
12秒前
王一一发布了新的文献求助10
13秒前
大模型应助HJL采纳,获得10
14秒前
Autken发布了新的文献求助10
14秒前
连夏之完成签到,获得积分10
14秒前
沈ff发布了新的文献求助10
15秒前
英姑应助害羞的煎蛋采纳,获得10
15秒前
15秒前
16秒前
66发完成签到,获得积分10
16秒前
田様应助星星气球采纳,获得50
17秒前
zxw发布了新的文献求助10
18秒前
zhou发布了新的文献求助10
19秒前
zengyiyong发布了新的文献求助10
19秒前
熏香澡牝完成签到,获得积分10
20秒前
蓝天完成签到,获得积分10
20秒前
激情的诗柳完成签到,获得积分10
20秒前
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149952
求助须知:如何正确求助?哪些是违规求助? 2800974
关于积分的说明 7842886
捐赠科研通 2458475
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628524
版权声明 601721