Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures

多米诺效应 多米诺骨牌 计算机科学 贝叶斯概率 动态贝叶斯网络 鉴定(生物学) 贝叶斯网络 风险分析(工程) 人工智能 生物 业务 生物化学 植物 物理 催化作用 核物理学
作者
Nima Khakzad
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:138: 263-272 被引量:218
标识
DOI:10.1016/j.ress.2015.02.007
摘要

A domino effect is a low frequency high consequence chain of accidents where a primary accident (usually fire and explosion) in a unit triggers secondary accidents in adjacent units. High complexity and growing interdependencies of chemical infrastructures make them increasingly vulnerable to domino effects. Domino effects can be considered as time dependent processes. Thus, not only the identification of involved units but also their temporal entailment in the chain of accidents matter. More importantly, in the case of domino-induced fires which can generally last much longer compared to explosions, foreseeing the temporal evolution of domino effects and, in particular, predicting the most probable sequence of accidents (or involved units) in a domino effect can be of significance in the allocation of preventive and protective safety measures. Although many attempts have been made to identify the spatial evolution of domino effects, the temporal evolution of such accidents has been overlooked. We have proposed a methodology based on dynamic Bayesian network to model both the spatial and temporal evolutions of domino effects and also to quantify the most probable sequence of accidents in a potential domino effect. The application of the developed methodology has been demonstrated via a hypothetical fuel storage plant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子汽水完成签到 ,获得积分10
刚刚
孙ym关注了科研通微信公众号
1秒前
2秒前
2秒前
思源应助caoruotong采纳,获得10
4秒前
4秒前
HJ完成签到,获得积分10
4秒前
由哎发布了新的文献求助10
5秒前
6秒前
彭佳丽发布了新的文献求助10
7秒前
bofu发布了新的文献求助10
7秒前
含糊的安柏完成签到,获得积分20
8秒前
雨er发布了新的文献求助10
8秒前
9秒前
HJ发布了新的文献求助30
10秒前
10秒前
123发布了新的文献求助10
11秒前
xixi完成签到,获得积分10
11秒前
gent发布了新的文献求助20
12秒前
wjx发布了新的文献求助10
12秒前
12秒前
宇心应助含糊的安柏采纳,获得10
13秒前
SDSD完成签到 ,获得积分10
13秒前
bofu发布了新的文献求助10
14秒前
特警飞龙完成签到,获得积分10
16秒前
传奇3应助莫羽倾尘采纳,获得10
16秒前
酷波er应助英勇代荷采纳,获得10
16秒前
小柯发布了新的文献求助10
16秒前
17秒前
华仔应助www采纳,获得10
18秒前
19秒前
19秒前
19秒前
和光同尘发布了新的文献求助10
22秒前
bofu发布了新的文献求助10
22秒前
24秒前
24秒前
孙ym发布了新的文献求助10
26秒前
26秒前
lvvyy126发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451