Tensor Completion for Estimating Missing Values in Visual Data

矩阵完成 张量(固有定义) 算法 缺少数据 矩阵范数 基质(化学分析) 平滑的 离群值 计算机科学 跟踪(心理语言学) 低秩近似 数学优化 规范(哲学) 数学 人工智能 机器学习 计算机视觉 量子力学 语言学 物理 哲学 政治学 特征向量 复合材料 高斯分布 材料科学 法学 纯数学
作者
Ji Liu,Przemyslaw Musialski,Peter Wonka,Jieping Ye
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:35 (1): 208-220 被引量:1757
标识
DOI:10.1109/tpami.2012.39
摘要

In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependant relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between FaLRTC and HaLRTC the former is more efficient to obtain a low accuracy solution and the latter is preferred if a high-accuracy solution is desired.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
研友_LJGpan应助科研通管家采纳,获得10
2秒前
EasyNan应助科研通管家采纳,获得20
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
于是真的完成签到,获得积分10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得30
3秒前
文献完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
wanci应助科研通管家采纳,获得30
3秒前
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得30
3秒前
研友_LJGpan应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
wkjfh应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
4秒前
实验好难应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
娴娴超爱笑完成签到,获得积分10
4秒前
高高高发布了新的文献求助10
6秒前
7秒前
冷艳三颜发布了新的文献求助10
7秒前
8秒前
霸气谷蕊发布了新的文献求助10
8秒前
Yang发布了新的文献求助10
8秒前
9秒前
yy应助老Mark采纳,获得10
9秒前
yy应助老Mark采纳,获得10
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427