转子(电动)
方位(导航)
机械
物理
声学
振幅
材料科学
控制理论(社会学)
结构工程
工程类
光学
计算机科学
天文
量子力学
人工智能
控制(管理)
作者
Jason Wilkes,Dara W. Childs
摘要
As described in Part I (Wilkes et al., 2012, “Improving Tilting-Pad Journal Bearing Predictions—Part I: Model Development and Impact of Rotor Excited Versus Bearing Excited Impedance Coefficients,” ASME J. Eng. Gas Turb. Power, 135(1), p. 012503), most analytical models for tilting-pad journal bearing (TPJBs) are based on the assumption that explicit dependence on pad motion can be eliminated by assuming harmonic rotor motion such that the amplitude and phase of pad motions resulting from radial and transverse rotor motions are predicted by rotor-pad transfer functions. In short, these transfer functions specify the amplitude and phase of pad motion (angular, radial, translational, etc.) in response to an input rotor motion. Direct measurements of pad motion during test excitation were recorded to produce measured transfer functions between rotor and pad motion, and a comparison between these measurements and predictions is given. Motion probes were added to the loaded pad (having the static load vector directed through its pivot) of a 5-pad TPJB to obtain accurate measurement of pad radial and tangential motion, as well as tilt, yaw, and pitch. Strain gauges were attached to the side of the loaded pad to measure static and dynamic bending strains, which were then used to determine static and dynamic changes in pad curvature (pad clearance).
科研通智能强力驱动
Strongly Powered by AbleSci AI