已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Big data and artificial intelligence based early risk warning system of fire hazard for smart cities

大数据 智慧城市 计算机科学 危害 物联网 数据科学 预警系统 分析 可持续发展 计算机安全 电信 数据挖掘 化学 有机化学 政治学 法学
作者
Yongchang Zhang,Panpan Geng,C. B. Sivaparthipan,BalaAnand Muthu
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier]
卷期号:45: 100986-100986 被引量:134
标识
DOI:10.1016/j.seta.2020.100986
摘要

Driven by information technology, big data provides new development opportunities for city construction. People use multiple scientific advancements such as the Internet of Things (IoT) for data acquisition and Artificial Intelligence (AI) for big data analytics to enhance the integration and sharing of data and optimize the basic standards of smart cities. Past few years, the concept behind the Internet of Things has been a major research topic in the development of smart cities, education, industry, and commerce. Services and applications of IoT are the major factors for creating a sustainable urban life that is employed by smart cities. The stakeholders of smart cities become more aware, efficient, and interactive using Information and Communication Technology (ICT) in IoT. The applications of smart cities based on IoT have been increased in number which leads to production and increase in the amount of data and its processing. Moreover, the city stakeholders and governments take prior actions/precautions for processing the collected data from the IoT devices and predicting the future consequences for securing a sustainable environment. Artificial Intelligence is one of the key research techniques which several researchers have analysed and proved to be the best in improving the performance of detecting fire hazard in smart cities. In this research, a Deep Belief Network (DBN) with Recurrent LSTM Neural Network (R-LSTM-NN) is proposed for prediction of big data that are collected from smart cities based on IoT. Moreover, the proposed model mainly concentrates in predicting the fire hazard values that gathered from smart cities using IoT devices. The simulation results show that the proposed technique proves to be better when compared with other existing techniques in terms of accuracy, precision, recall, and F-1 score. The proposed model detects the fire outbreak with a 98.4% of accuracy that having 0.14% of minimal error rate. Furthermore, the proposed model can be used for various prediction problems that are faced by smart cities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橘子完成签到,获得积分10
2秒前
3秒前
smh完成签到 ,获得积分10
5秒前
学不完了完成签到 ,获得积分10
5秒前
9秒前
9秒前
维克托发布了新的文献求助10
11秒前
guan完成签到,获得积分10
12秒前
万能图书馆应助WuCola采纳,获得10
13秒前
Calvin完成签到,获得积分20
13秒前
ybk666完成签到,获得积分10
14秒前
哈哈发布了新的文献求助10
14秒前
pojian完成签到,获得积分10
16秒前
wzzz完成签到,获得积分10
17秒前
派大星完成签到 ,获得积分10
21秒前
liwhao完成签到,获得积分10
21秒前
22秒前
一见憘完成签到 ,获得积分10
23秒前
24秒前
杨秋月发布了新的文献求助10
29秒前
踏云完成签到 ,获得积分10
30秒前
棠臻完成签到 ,获得积分10
33秒前
33秒前
33秒前
Moonpie应助科研通管家采纳,获得10
34秒前
Moonpie应助科研通管家采纳,获得10
34秒前
Moonpie应助科研通管家采纳,获得10
34秒前
CipherSage应助科研通管家采纳,获得10
34秒前
Moonpie应助科研通管家采纳,获得10
34秒前
CAOHOU应助科研通管家采纳,获得10
34秒前
所所应助科研通管家采纳,获得10
34秒前
Moonpie应助科研通管家采纳,获得10
34秒前
Moonpie应助科研通管家采纳,获得10
34秒前
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
沉默皮卡丘完成签到 ,获得积分10
36秒前
科研通AI6.1应助维克托采纳,获得10
37秒前
科研通AI6.1应助Yilam采纳,获得10
39秒前
打打应助淡淡的面包采纳,获得10
39秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746340
求助须知:如何正确求助?哪些是违规求助? 5432754
关于积分的说明 15355163
捐赠科研通 4886241
什么是DOI,文献DOI怎么找? 2627141
邀请新用户注册赠送积分活动 1575625
关于科研通互助平台的介绍 1532338