亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Big data and artificial intelligence based early risk warning system of fire hazard for smart cities

大数据 智慧城市 计算机科学 危害 物联网 数据科学 预警系统 分析 可持续发展 计算机安全 电信 数据挖掘 政治学 有机化学 化学 法学
作者
Yongchang Zhang,Panpan Geng,C. B. Sivaparthipan,BalaAnand Muthu
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:45: 100986-100986 被引量:134
标识
DOI:10.1016/j.seta.2020.100986
摘要

Driven by information technology, big data provides new development opportunities for city construction. People use multiple scientific advancements such as the Internet of Things (IoT) for data acquisition and Artificial Intelligence (AI) for big data analytics to enhance the integration and sharing of data and optimize the basic standards of smart cities. Past few years, the concept behind the Internet of Things has been a major research topic in the development of smart cities, education, industry, and commerce. Services and applications of IoT are the major factors for creating a sustainable urban life that is employed by smart cities. The stakeholders of smart cities become more aware, efficient, and interactive using Information and Communication Technology (ICT) in IoT. The applications of smart cities based on IoT have been increased in number which leads to production and increase in the amount of data and its processing. Moreover, the city stakeholders and governments take prior actions/precautions for processing the collected data from the IoT devices and predicting the future consequences for securing a sustainable environment. Artificial Intelligence is one of the key research techniques which several researchers have analysed and proved to be the best in improving the performance of detecting fire hazard in smart cities. In this research, a Deep Belief Network (DBN) with Recurrent LSTM Neural Network (R-LSTM-NN) is proposed for prediction of big data that are collected from smart cities based on IoT. Moreover, the proposed model mainly concentrates in predicting the fire hazard values that gathered from smart cities using IoT devices. The simulation results show that the proposed technique proves to be better when compared with other existing techniques in terms of accuracy, precision, recall, and F-1 score. The proposed model detects the fire outbreak with a 98.4% of accuracy that having 0.14% of minimal error rate. Furthermore, the proposed model can be used for various prediction problems that are faced by smart cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盛夏如花发布了新的文献求助10
10秒前
咪咪完成签到 ,获得积分10
10秒前
科研通AI5应助盛夏如花采纳,获得10
26秒前
ssu90完成签到,获得积分10
38秒前
joeandrows发布了新的文献求助10
41秒前
44秒前
盛夏如花发布了新的文献求助10
51秒前
57秒前
1分钟前
莫大完成签到 ,获得积分10
1分钟前
于啊发布了新的文献求助10
1分钟前
梅荣庆完成签到 ,获得积分10
1分钟前
claud完成签到 ,获得积分0
1分钟前
战神林北完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
盛夏如花发布了新的文献求助20
1分钟前
忧郁小鸽子完成签到,获得积分10
1分钟前
1分钟前
shoolarli发布了新的文献求助10
1分钟前
lianzx发布了新的文献求助10
1分钟前
于啊完成签到,获得积分10
1分钟前
hERe完成签到 ,获得积分10
1分钟前
luohao完成签到,获得积分10
2分钟前
云雨完成签到 ,获得积分10
2分钟前
科研通AI5应助盛夏如花采纳,获得10
2分钟前
后巷的知识份子完成签到,获得积分10
2分钟前
2分钟前
盛夏如花发布了新的文献求助10
2分钟前
wanci应助宁燕采纳,获得10
2分钟前
2分钟前
浮游应助张贵虎采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得30
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
科研通AI5应助盛夏如花采纳,获得10
2分钟前
2分钟前
宁燕完成签到,获得积分10
2分钟前
2分钟前
宁燕发布了新的文献求助10
2分钟前
2分钟前
ww发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063987
求助须知:如何正确求助?哪些是违规求助? 4287353
关于积分的说明 13358819
捐赠科研通 4105583
什么是DOI,文献DOI怎么找? 2248166
邀请新用户注册赠送积分活动 1253704
关于科研通互助平台的介绍 1184878