Big data and artificial intelligence based early risk warning system of fire hazard for smart cities

大数据 智慧城市 计算机科学 危害 物联网 数据科学 预警系统 分析 可持续发展 计算机安全 电信 数据挖掘 政治学 有机化学 化学 法学
作者
Yongchang Zhang,Panpan Geng,C. B. Sivaparthipan,BalaAnand Muthu
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier]
卷期号:45: 100986-100986 被引量:122
标识
DOI:10.1016/j.seta.2020.100986
摘要

Driven by information technology, big data provides new development opportunities for city construction. People use multiple scientific advancements such as the Internet of Things (IoT) for data acquisition and Artificial Intelligence (AI) for big data analytics to enhance the integration and sharing of data and optimize the basic standards of smart cities. Past few years, the concept behind the Internet of Things has been a major research topic in the development of smart cities, education, industry, and commerce. Services and applications of IoT are the major factors for creating a sustainable urban life that is employed by smart cities. The stakeholders of smart cities become more aware, efficient, and interactive using Information and Communication Technology (ICT) in IoT. The applications of smart cities based on IoT have been increased in number which leads to production and increase in the amount of data and its processing. Moreover, the city stakeholders and governments take prior actions/precautions for processing the collected data from the IoT devices and predicting the future consequences for securing a sustainable environment. Artificial Intelligence is one of the key research techniques which several researchers have analysed and proved to be the best in improving the performance of detecting fire hazard in smart cities. In this research, a Deep Belief Network (DBN) with Recurrent LSTM Neural Network (R-LSTM-NN) is proposed for prediction of big data that are collected from smart cities based on IoT. Moreover, the proposed model mainly concentrates in predicting the fire hazard values that gathered from smart cities using IoT devices. The simulation results show that the proposed technique proves to be better when compared with other existing techniques in terms of accuracy, precision, recall, and F-1 score. The proposed model detects the fire outbreak with a 98.4% of accuracy that having 0.14% of minimal error rate. Furthermore, the proposed model can be used for various prediction problems that are faced by smart cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh发布了新的文献求助10
刚刚
FashionBoy应助sbrcpyf采纳,获得10
1秒前
丘比特应助Regina采纳,获得30
1秒前
rekha发布了新的文献求助10
1秒前
今后应助Lgenius采纳,获得10
1秒前
1秒前
xw发布了新的文献求助10
3秒前
大个应助快乐小狗采纳,获得10
3秒前
3秒前
4秒前
呀小贝壳完成签到 ,获得积分20
4秒前
猪猪hero应助曾无忧采纳,获得10
4秒前
小番茄发布了新的文献求助10
7秒前
123456发布了新的文献求助10
7秒前
7秒前
8秒前
文武完成签到 ,获得积分10
8秒前
10秒前
无花果应助Smoiy采纳,获得200
10秒前
微醺的Phd完成签到,获得积分10
10秒前
科研通AI2S应助虚拟的羽毛采纳,获得10
10秒前
星辰大海应助柚皘采纳,获得10
11秒前
悲凉的大船完成签到,获得积分10
11秒前
顾翩翩完成签到,获得积分10
12秒前
12秒前
sbrcpyf发布了新的文献求助10
12秒前
nenoaowu发布了新的文献求助10
14秒前
15秒前
快乐小狗发布了新的文献求助10
16秒前
科研通AI2S应助Linanana采纳,获得10
16秒前
李思超完成签到,获得积分10
16秒前
lk完成签到 ,获得积分10
16秒前
稳wen发布了新的文献求助10
17秒前
麦豆腐德应助七七采纳,获得10
17秒前
VDC应助L_采纳,获得20
17秒前
藏马完成签到,获得积分10
18秒前
科研民工_郭完成签到,获得积分10
18秒前
19秒前
田様应助早爹采纳,获得10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551983
求助须知:如何正确求助?哪些是违规求助? 3128409
关于积分的说明 9377696
捐赠科研通 2827437
什么是DOI,文献DOI怎么找? 1554378
邀请新用户注册赠送积分活动 725463
科研通“疑难数据库(出版商)”最低求助积分说明 714884