Big data and artificial intelligence based early risk warning system of fire hazard for smart cities

大数据 智慧城市 计算机科学 危害 物联网 数据科学 预警系统 分析 可持续发展 计算机安全 电信 数据挖掘 政治学 有机化学 化学 法学
作者
Yongchang Zhang,Panpan Geng,C. B. Sivaparthipan,BalaAnand Muthu
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:45: 100986-100986 被引量:134
标识
DOI:10.1016/j.seta.2020.100986
摘要

Driven by information technology, big data provides new development opportunities for city construction. People use multiple scientific advancements such as the Internet of Things (IoT) for data acquisition and Artificial Intelligence (AI) for big data analytics to enhance the integration and sharing of data and optimize the basic standards of smart cities. Past few years, the concept behind the Internet of Things has been a major research topic in the development of smart cities, education, industry, and commerce. Services and applications of IoT are the major factors for creating a sustainable urban life that is employed by smart cities. The stakeholders of smart cities become more aware, efficient, and interactive using Information and Communication Technology (ICT) in IoT. The applications of smart cities based on IoT have been increased in number which leads to production and increase in the amount of data and its processing. Moreover, the city stakeholders and governments take prior actions/precautions for processing the collected data from the IoT devices and predicting the future consequences for securing a sustainable environment. Artificial Intelligence is one of the key research techniques which several researchers have analysed and proved to be the best in improving the performance of detecting fire hazard in smart cities. In this research, a Deep Belief Network (DBN) with Recurrent LSTM Neural Network (R-LSTM-NN) is proposed for prediction of big data that are collected from smart cities based on IoT. Moreover, the proposed model mainly concentrates in predicting the fire hazard values that gathered from smart cities using IoT devices. The simulation results show that the proposed technique proves to be better when compared with other existing techniques in terms of accuracy, precision, recall, and F-1 score. The proposed model detects the fire outbreak with a 98.4% of accuracy that having 0.14% of minimal error rate. Furthermore, the proposed model can be used for various prediction problems that are faced by smart cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OAHCIL完成签到 ,获得积分10
刚刚
青黄应助猪美丽采纳,获得10
刚刚
跳跃的惮完成签到,获得积分10
刚刚
冥冥之极为昭昭应助zhuang采纳,获得10
1秒前
快来吃甜瓜完成签到,获得积分10
2秒前
nuantong1shy完成签到,获得积分10
2秒前
lxy完成签到,获得积分10
2秒前
李健应助yu采纳,获得10
3秒前
琦琦国王完成签到,获得积分10
3秒前
易燃物品完成签到,获得积分10
3秒前
flac完成签到,获得积分10
5秒前
米奇的妙妙屋完成签到 ,获得积分10
5秒前
Mr_I完成签到,获得积分10
6秒前
BOSSJING完成签到,获得积分10
6秒前
liu完成签到,获得积分20
6秒前
majf发布了新的文献求助10
6秒前
mescal完成签到,获得积分10
6秒前
Welcome完成签到,获得积分10
7秒前
和和完成签到,获得积分10
8秒前
坚定青柏完成签到,获得积分10
9秒前
小灰灰完成签到 ,获得积分10
10秒前
RYAN完成签到 ,获得积分10
10秒前
秘小先儿应助海比天蓝采纳,获得10
11秒前
Zhusy完成签到 ,获得积分10
11秒前
11秒前
12秒前
自觉南风完成签到,获得积分10
12秒前
文静的白羊完成签到,获得积分10
12秒前
12秒前
Cuisine完成签到 ,获得积分10
12秒前
weven完成签到 ,获得积分10
13秒前
13秒前
14秒前
tivyg'lk完成签到,获得积分10
14秒前
xiaoyh96发布了新的文献求助10
14秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
陈文娟发布了新的文献求助10
16秒前
yy完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259