Causal inference with observational data: the need for triangulation of evidence

因果推理 观察研究 统计推断 稳健性(进化) 推论 计算机科学 数据科学 三角测量 选择偏差 优势和劣势 混淆 计量经济学 心理学观察方法 因果结构 管理科学 机器学习 心理学 人工智能 统计 数学 社会心理学 工程类 物理 几何学 基因 量子力学 化学 生物化学
作者
Gemma Hammerton,Marcus R. Munafò
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:51 (4): 563-578 被引量:85
标识
DOI:10.1017/s0033291720005127
摘要

Abstract The goal of much observational research is to identify risk factors that have a causal effect on health and social outcomes. However, observational data are subject to biases from confounding, selection and measurement, which can result in an underestimate or overestimate of the effect of interest. Various advanced statistical approaches exist that offer certain advantages in terms of addressing these potential biases. However, although these statistical approaches have different underlying statistical assumptions, in practice they cannot always completely remove key sources of bias; therefore, using design-based approaches to improve causal inference is also important. Here it is the design of the study that addresses the problem of potential bias – either by ensuring it is not present (under certain assumptions) or by comparing results across methods with different sources and direction of potential bias. The distinction between statistical and design-based approaches is not an absolute one, but it provides a framework for triangulation – the thoughtful application of multiple approaches (e.g. statistical and design based), each with their own strengths and weaknesses, and in particular sources and directions of bias. It is unlikely that any single method can provide a definite answer to a causal question, but the triangulation of evidence provided by different approaches can provide a stronger basis for causal inference. Triangulation can be considered part of wider efforts to improve the transparency and robustness of scientific research, and the wider scientific infrastructure and system of incentives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的思柔完成签到,获得积分10
1秒前
skepticalsnails完成签到,获得积分10
2秒前
标致小翠完成签到,获得积分10
2秒前
Star完成签到 ,获得积分10
2秒前
情怀应助蓝枫采纳,获得10
5秒前
赫幼蓉完成签到 ,获得积分10
6秒前
Misaki完成签到,获得积分10
7秒前
Karry完成签到 ,获得积分10
12秒前
和谐曼凝完成签到 ,获得积分10
13秒前
steven完成签到 ,获得积分10
14秒前
小明完成签到,获得积分10
14秒前
222完成签到,获得积分10
14秒前
单纯的小土豆完成签到,获得积分10
16秒前
17秒前
18秒前
东方越彬发布了新的文献求助20
20秒前
23秒前
DMMM完成签到,获得积分10
24秒前
tutu完成签到,获得积分10
26秒前
脆脆应答完成签到,获得积分10
27秒前
zxj完成签到,获得积分10
32秒前
fan完成签到 ,获得积分10
34秒前
NexusExplorer应助科研通管家采纳,获得10
37秒前
37秒前
JamesPei应助科研通管家采纳,获得30
37秒前
桐桐应助科研通管家采纳,获得10
37秒前
InfoNinja应助科研通管家采纳,获得30
37秒前
桐桐应助科研通管家采纳,获得10
38秒前
烟花应助科研通管家采纳,获得10
38秒前
Adler应助科研通管家采纳,获得10
38秒前
赘婿应助科研通管家采纳,获得10
38秒前
在水一方应助科研通管家采纳,获得10
38秒前
九珥完成签到,获得积分10
39秒前
wjw关闭了wjw文献求助
43秒前
xiezizai完成签到,获得积分10
43秒前
飞舞的青鱼完成签到,获得积分10
46秒前
小刚完成签到,获得积分0
46秒前
今后应助自然的雅琴采纳,获得20
48秒前
Ssyong完成签到 ,获得积分10
48秒前
空洛完成签到 ,获得积分10
49秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137101
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784523
捐赠科研通 2444109
什么是DOI,文献DOI怎么找? 1299758
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011