亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Causal inference with observational data: the need for triangulation of evidence

因果推理 观察研究 统计推断 稳健性(进化) 推论 计算机科学 数据科学 三角测量 选择偏差 优势和劣势 混淆 计量经济学 心理学观察方法 因果结构 管理科学 机器学习 心理学 人工智能 统计 数学 社会心理学 工程类 物理 几何学 基因 量子力学 化学 生物化学
作者
Gemma Hammerton,Marcus R. Munafò
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:51 (4): 563-578 被引量:85
标识
DOI:10.1017/s0033291720005127
摘要

Abstract The goal of much observational research is to identify risk factors that have a causal effect on health and social outcomes. However, observational data are subject to biases from confounding, selection and measurement, which can result in an underestimate or overestimate of the effect of interest. Various advanced statistical approaches exist that offer certain advantages in terms of addressing these potential biases. However, although these statistical approaches have different underlying statistical assumptions, in practice they cannot always completely remove key sources of bias; therefore, using design-based approaches to improve causal inference is also important. Here it is the design of the study that addresses the problem of potential bias – either by ensuring it is not present (under certain assumptions) or by comparing results across methods with different sources and direction of potential bias. The distinction between statistical and design-based approaches is not an absolute one, but it provides a framework for triangulation – the thoughtful application of multiple approaches (e.g. statistical and design based), each with their own strengths and weaknesses, and in particular sources and directions of bias. It is unlikely that any single method can provide a definite answer to a causal question, but the triangulation of evidence provided by different approaches can provide a stronger basis for causal inference. Triangulation can be considered part of wider efforts to improve the transparency and robustness of scientific research, and the wider scientific infrastructure and system of incentives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缘迹完成签到,获得积分10
10秒前
发个15分的完成签到 ,获得积分10
23秒前
37秒前
yyt发布了新的文献求助10
40秒前
42秒前
56秒前
可爱的函函应助白柏采纳,获得100
56秒前
YuxinChen完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
1分钟前
Ldq应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
seven发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
1分钟前
yb完成签到,获得积分10
1分钟前
隐形曼青应助六六采纳,获得10
2分钟前
2分钟前
2分钟前
lihuahui发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
手术刀完成签到 ,获得积分10
3分钟前
浮光完成签到,获得积分0
3分钟前
斯寜应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
李爱国应助坦率的文龙采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
周钰发布了新的文献求助10
4分钟前
秋天完成签到,获得积分10
4分钟前
4分钟前
4分钟前
白柏发布了新的文献求助100
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064306
求助须知:如何正确求助?哪些是违规求助? 4287478
关于积分的说明 13359035
捐赠科研通 4105919
什么是DOI,文献DOI怎么找? 2248297
邀请新用户注册赠送积分活动 1253824
关于科研通互助平台的介绍 1185178