已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference

人工智能 算法 模式识别(心理学) 断层(地质) 主成分分析 特征(语言学) 核主成分分析
作者
Yanning Sun,Wei Qin,Zilong Zhuang,Hong-Wei Xu
出处
期刊:Journal of Intelligent Manufacturing [Springer Nature]
卷期号:32 (7): 2007-2021 被引量:5
标识
DOI:10.1007/s10845-021-01752-9
摘要

In recent years, fault detection and diagnosis for industrial processes have been rapidly developed to minimize costs and maximize efficiency by taking advantages of cheap sensors and microprocessors, data analysis and artificial intelligence methods. However, due to the nonlinear and dynamic characteristics of industrial process data, the accuracy and efficiency of fault detection and diagnosis methods have always been an urgent problem in industry and academia. Therefore, this study proposes an adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window kernel principle component analysis (KPCA) and information geometric causal inference (IGCI). The proposed scheme has three main contributions. Firstly, a research scheme combining moving window KPCA with adaptive threshold is presented to handle the nonlinear and dynamic characteristics of complex industrial processes. Then, the multiobjective evolutionary algorithm is employed to select the optimal hyperparameters for fault detection, which not only avoids the blindness of hyperparameters selection, but also maximize model accuracy. Finally, the IGCI-based fault root-cause analysis method can help field operators to take corrective measures in time to resume the normal process. The proposed scheme is tested by the Tennessee Eastman platform. Its results show that this scheme has a good performance in reducing the faulty false alarms and missed detection rates and locating fault root-cause.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助zyw采纳,获得10
刚刚
1秒前
Zex发布了新的文献求助10
1秒前
风荷举完成签到,获得积分20
3秒前
我好想睡完成签到,获得积分10
4秒前
hyx9504发布了新的文献求助10
6秒前
番茄完成签到 ,获得积分10
7秒前
10秒前
12秒前
12秒前
13秒前
大模型应助从容凌萱采纳,获得10
14秒前
zyw发布了新的文献求助10
15秒前
Nikki发布了新的文献求助10
17秒前
luoshiwen完成签到,获得积分10
18秒前
研团子完成签到 ,获得积分10
18秒前
20秒前
结实的雪完成签到,获得积分10
22秒前
23秒前
danxue完成签到,获得积分10
23秒前
25秒前
Nikki完成签到,获得积分10
26秒前
ceeray23发布了新的文献求助111
28秒前
幽默不愁发布了新的文献求助10
29秒前
小昕思完成签到 ,获得积分10
32秒前
wlj完成签到 ,获得积分10
33秒前
serena1127发布了新的文献求助10
35秒前
35秒前
丘比特应助xioabu采纳,获得10
36秒前
大胆班完成签到,获得积分10
37秒前
还单身的竺完成签到 ,获得积分10
39秒前
39秒前
42秒前
An完成签到,获得积分10
46秒前
风荷举关注了科研通微信公众号
46秒前
ccc完成签到 ,获得积分10
47秒前
kzg完成签到 ,获得积分10
54秒前
后山种仙草完成签到,获得积分10
54秒前
汉堡包应助123456采纳,获得10
54秒前
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466610
求助须知:如何正确求助?哪些是违规求助? 3059430
关于积分的说明 9066178
捐赠科研通 2749884
什么是DOI,文献DOI怎么找? 1508779
科研通“疑难数据库(出版商)”最低求助积分说明 697059
邀请新用户注册赠送积分活动 696883