亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TransMed: Transformers Advance Multi-modal Medical Image Classification

计算机科学 卷积神经网络 变压器 人工智能 地点 情态动词 医学影像学 模式识别(心理学) 分割 机器学习 工程类 电气工程 哲学 语言学 电压 化学 高分子化学
作者
Yin Dai,Yifan Gao
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2103.05940
摘要

Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it can not deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model for the challenging problem of preoperative diagnosis of parotid gland tumors, and the experimental results show the advantages of our proposed method. We argue that the combination of CNN and transformer has tremendous potential in a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to medical image classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
23秒前
Www发布了新的文献求助10
28秒前
Qi应助Www采纳,获得20
33秒前
yema完成签到 ,获得积分10
34秒前
Voskov发布了新的文献求助10
35秒前
46秒前
Perry完成签到,获得积分10
50秒前
andrele发布了新的文献求助10
53秒前
Qi应助morena采纳,获得10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
科研通AI5应助蓝莓丢了霉采纳,获得10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
徐小越完成签到,获得积分10
1分钟前
杨乃彬完成签到,获得积分10
1分钟前
1分钟前
852应助春曙为最采纳,获得10
1分钟前
sd发布了新的文献求助10
1分钟前
2分钟前
2分钟前
春曙为最发布了新的文献求助10
2分钟前
2分钟前
大模型应助张兮兮采纳,获得10
2分钟前
2分钟前
春曙为最完成签到,获得积分10
2分钟前
sd完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
捉迷藏完成签到,获得积分10
3分钟前
张兮兮发布了新的文献求助10
3分钟前
3分钟前
3分钟前
张兮兮完成签到,获得积分10
3分钟前
斯文雁易发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580358
求助须知:如何正确求助?哪些是违规求助? 3149890
关于积分的说明 9479310
捐赠科研通 2851398
什么是DOI,文献DOI怎么找? 1567783
邀请新用户注册赠送积分活动 734253
科研通“疑难数据库(出版商)”最低求助积分说明 720565