静电纺丝
材料科学
同轴
碱性磷酸酶
电流体力学
化学工程
生物利用度
纳米技术
聚合物
复合材料
化学
酶
计算机科学
生物信息学
生物化学
工程类
生物
物理化学
电信
电极
作者
Lesley Onyekuru,Anabela Moreira,Jiazhe Zhang,Ukrit Angkawinitwong,Pedro F. Costa,Steve Brocchini,Gareth R. Williams
标识
DOI:10.1016/j.jddst.2021.102592
摘要
The high target specificity and multifunctionality of proteins has led to great interest in their clinical use. To this end, the development of delivery systems capable of preserving their bioactivity and improving bioavailability is pivotal to achieve high effectiveness and satisfactory therapeutic outcomes. Electrohydrodynamic (EHD) techniques, namely electrospinning and electrospraying, have been widely explored for protein encapsulation and delivery. In this work, monoaxial and coaxial electrospinning and electrospraying were used to encapsulate alkaline phosphatase (ALP) into poly(ethylene oxide) fibres and particles, respectively, and the effects of the processing techniques on the integrity and bioactivity of the enzyme were assessed. A full morphological and physicochemical characterisation of the blend and core-shell products was performed. ALP was successfully encapsulated within monolithic and core-shell electrospun fibres and electrosprayed particles, with drug loadings and encapsulation efficiencies of up to 21% and 99%, respectively. Monoaxial and coaxial electrospinning were equally effective in preserving ALP function, leading to no activity loss compared to fresh aqueous solutions of the enzyme. While the same result was observed for monoaxial electrospraying, coaxial electrospraying of ALP caused a 40% reduction in its bioactivity, which was attributed to the high voltage (22.5 kV) used during processing. This demonstrates that choosing between blend and coaxial EHD processing for protein encapsulation is not always straightforward, being highly dependent on the chosen therapeutic agent and the effects of the processing conditions on its bioactivity.
科研通智能强力驱动
Strongly Powered by AbleSci AI