A Light-weight Watermarking-Based Framework on Dataset Using Deep Learning Algorithms

计算机科学 卷积神经网络 机器学习 可执行文件 人工智能 钥匙(锁) 公制(单位) 数字水印 深度学习 算法 噪音(视频) 数据挖掘 人工神经网络 网络安全 计算机安全 图像(数学) 操作系统 经济 运营管理
作者
Muhammad Tayyab,Mohsen Marjani,N. Z. Jhanjhi,Mohamed Hashem
标识
DOI:10.1109/nccc49330.2021.9428845
摘要

In most decision-based security applications Deep Learning (DL) algorithms have been widely using for improvement. For better performance, a large amount of dataset has been used for training the DL algorithms. As DL has been remained a key element in the performance of the application, hence, several privacy and security issues have reported, which have affected the performance. Such security attacks have also affected the performance by taking the advantage of the huge dataset, because it is easy for an attacker to add executable noise into the dataset to get the information of the dataset and the model used. Most common security attacks like poisoning and evasion attacks have been considered challenging attacks that have caused misclassification and wrong prediction. Hence, a secure metric is needed to mitigate the effects of such attacks from the dataset. Therefore, in this paper, a light-weight watermarking framework has been proposed that provides security to the dataset before training the DL algorithms. We have implemented our proposed framework using the most common Convolutional Neural Network (CNN) and Artificial Neural Network (ANN) against security attacks. The proposed framework has been evaluated based on accuracy, precision, and computational cost, and has maintained the accuracy up to 98.89% and a precision of 0.96, which has maintained the level as in recent literature. We have also reduced the computational cost for the proposed framework. We believed that the proposed framework can be used to mitigate the security issues in DL algorithms and enhanced toward other security applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
邵洋完成签到,获得积分10
2秒前
2秒前
SYLH应助哎呀呀采纳,获得10
3秒前
英俊的铭应助叮当采纳,获得10
3秒前
aron发布了新的文献求助20
5秒前
5秒前
Alessnndre发布了新的文献求助10
6秒前
初次完成签到 ,获得积分10
8秒前
墨川关注了科研通微信公众号
9秒前
lee发布了新的文献求助10
9秒前
9秒前
老木虫发布了新的文献求助10
10秒前
gsji完成签到,获得积分10
10秒前
Flyzhang完成签到,获得积分10
13秒前
芳芳完成签到,获得积分10
14秒前
叮当发布了新的文献求助10
14秒前
hxl123发布了新的文献求助10
15秒前
17秒前
哎呀呀完成签到,获得积分10
17秒前
良陈美景奈何天完成签到 ,获得积分10
18秒前
yanna发布了新的文献求助150
22秒前
大胆的夏天完成签到,获得积分10
23秒前
在水一方应助xhj采纳,获得10
24秒前
谢亚飞发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
y彤完成签到,获得积分10
28秒前
28秒前
ZZZ发布了新的文献求助10
28秒前
邓妍童完成签到,获得积分10
29秒前
JamesPei应助李李李采纳,获得10
29秒前
靠得住的小仙女完成签到,获得积分10
29秒前
29秒前
29秒前
机灵的雁蓉完成签到,获得积分10
29秒前
小马甲应助复杂的板栗采纳,获得10
30秒前
小马过河发布了新的文献求助10
32秒前
wumeiyu驳回了XXPXX应助
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835