材料科学
阴极
阳极
离子
杂质
钠离子电池
钠
相(物质)
电极
冶金
电气工程
法拉第效率
化学
工程类
物理化学
有机化学
作者
Along Zhao,Tianci Yuan,Peng Li,Changyu Liu,Hengjiang Cong,Xiangjun Pu,Zhongxue Chen,Xiping Ai,Hanxi Yang,Yuliang Cao
出处
期刊:Nano Energy
[Elsevier]
日期:2021-11-05
卷期号:91: 106680-106680
被引量:109
标识
DOI:10.1016/j.nanoen.2021.106680
摘要
Na4Fe3(PO4)2(P2O7) (NFPP), as a typical cathode material of sodium ion battery, has great application prospect because of its low-cost, non-toxicity and appropriate working voltage and theoretical capacity. However, its poor electron and ion conductivities associated by non-erasable NaFePO4 impurity generated in all the synthesis methods limits the capacity utilization of NFPP. Herein, we report a novel pure-phase Na4Fe2.91(PO4)2(P2O7) cathode material prepared simply by introducing a small amount of Fe defects in the lattice. The first-principles calculations reveal that Fe defects in the NFPP materials result in a lower band gap and migration energy barriers, thereby leading to a higher electron and Na+ ion conductivity. As a result, the pure-phase Na4Fe2.91(PO4)2(P2O7) cathode exhibits a high discharge capacity (110.9 mA h g−1 at 0.2 C), excellent rate performance (~52 mA h g−1 at 100 C) and outstanding long cycle stability over 10,000 cycles without discernible capacity decay. The pouch cell assembled with Na4Fe2.91(PO4)2(P2O7) cathode and hard carbon anode, shows high capacity retention rate of 87.4% over 1000 cycles. These results suggest a feasible application of the simple defect regulation strategy to synthesize high-quality and pure-phase Na4Fe2.91(PO4)2(P2O7) materials for low-cost sodium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI