计算机科学
人工神经网络
图形
键合图
代表(政治)
直线(几何图形)
理论计算机科学
财产(哲学)
算法
人工智能
数学
组合数学
几何学
认识论
哲学
政治
政治学
法学
作者
Kamal Choudhary,Brian DeCost
标识
DOI:10.1038/s41524-021-00650-1
摘要
Abstract Graph neural networks (GNN) have been shown to provide substantial performance improvements for atomistic material representation and modeling compared with descriptor-based machine learning models. While most existing GNN models for atomistic predictions are based on atomic distance information, they do not explicitly incorporate bond angles, which are critical for distinguishing many atomic structures. Furthermore, many material properties are known to be sensitive to slight changes in bond angles. We present an Atomistic Line Graph Neural Network (ALIGNN), a GNN architecture that performs message passing on both the interatomic bond graph and its line graph corresponding to bond angles. We demonstrate that angle information can be explicitly and efficiently included, leading to improved performance on multiple atomistic prediction tasks. We ALIGNN models for predicting 52 solid-state and molecular properties available in the JARVIS-DFT, Materials project, and QM9 databases. ALIGNN can outperform some previously reported GNN models on atomistic prediction tasks with better or comparable model training speed.
科研通智能强力驱动
Strongly Powered by AbleSci AI