Semi-supervised learning with progressive unlabeled data excavation for label-efficient surgical workflow recognition

工作流程 计算机科学 边距(机器学习) 人工智能 注释 一致性(知识库) 机器学习 钥匙(锁) 领域知识 数据挖掘 模式识别(心理学) 数据库 计算机安全
作者
Xueying Shi,Yueming Jin,Qi Dou,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102158-102158 被引量:27
标识
DOI:10.1016/j.media.2021.102158
摘要

• A novel S emi- S upervised L earning method for label-efficient Surg ical workflow recognition ( SurgSSL ), which progressively utilizes unlabeled data in two learning stages, from implicit excavation to explicit excavation. • A novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme for implicit excavation from unlabeled data. By adding regularization from both visual and temporal perspectives, it encourages model to excavate motion cues from unlabeled videos. • Pre-knowledge pseudo label is designed to continue to optimize the model for explicit excavation from unlabeled data. With prior unlabeled data knowledge encoded for the Pre-knowledge pseudo label, it demonstrates more precise supervision capability compared with conventional pseudo labels. • Outstanding experimental results shown on two popular benchmark surgical phase recognition dataset demonstrate the effectiveness of our SurgSSL method. Surgical workflow recognition is a fundamental task in computer-assisted surgery and a key component of various applications in operating rooms. Existing deep learning models have achieved promising results for surgical workflow recognition, heavily relying on a large amount of annotated videos. However, obtaining annotation is time-consuming and requires the domain knowledge of surgeons. In this paper, we propose a novel two-stage S emi- S upervised L earning method for label-efficient Surg ical workflow recognition, named as SurgSSL . Our proposed SurgSSL progressively leverages the inherent knowledge held in the unlabeled data to a larger extent: from implicit unlabeled data excavation via motion knowledge excavation, to explicit unlabeled data excavation via pre-knowledge pseudo labeling. Specifically, we first propose a novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme for implicit excavation. It enforces prediction consistency of the same data under perturbations in both spatial and temporal spaces, encouraging model to capture rich motion knowledge. We further perform explicit excavation by optimizing the model towards our pre-knowledge pseudo label. It is naturally generated by the VTDC regularized model with prior knowledge of unlabeled data encoded, and demonstrates superior reliability for model supervision compared with the label generated by existing methods. We extensively evaluate our method on two public surgical datasets of Cholec80 and M2CAI challenge dataset. Our method surpasses the state-of-the-art semi-supervised methods by a large margin, e.g., improving 10.5% Accuracy under the severest annotation regime of M2CAI dataset. Using only 50% labeled videos on Cholec80, our approach achieves competitive performance compared with full-data training method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助wolf采纳,获得10
刚刚
大胆棒球发布了新的文献求助10
1秒前
江你一军发布了新的文献求助10
2秒前
云翰完成签到,获得积分10
2秒前
2秒前
标致乐双完成签到,获得积分10
5秒前
5秒前
爱吃汤圆的猫完成签到 ,获得积分10
6秒前
Ming完成签到,获得积分10
6秒前
whx发布了新的文献求助10
6秒前
wolf完成签到,获得积分20
8秒前
8秒前
刘江完成签到,获得积分10
8秒前
8秒前
8秒前
dzx关闭了dzx文献求助
8秒前
9秒前
9秒前
10秒前
10秒前
古的古的发布了新的文献求助50
11秒前
文献求助完成签到,获得积分10
11秒前
包谷冬发布了新的文献求助10
11秒前
情怀应助TFBOY采纳,获得10
12秒前
12秒前
霸气的老虎完成签到,获得积分10
12秒前
whx完成签到,获得积分10
13秒前
13秒前
wolf发布了新的文献求助10
14秒前
慕青应助张继妖采纳,获得10
14秒前
guozizi发布了新的文献求助30
14秒前
英雄的黎明完成签到,获得积分20
14秒前
淡淡醉波wuliao完成签到 ,获得积分10
15秒前
15秒前
15秒前
17秒前
17秒前
12138发布了新的文献求助10
18秒前
Pudding完成签到,获得积分10
19秒前
20秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328014
求助须知:如何正确求助?哪些是违规求助? 2958132
关于积分的说明 8589374
捐赠科研通 2636415
什么是DOI,文献DOI怎么找? 1442975
科研通“疑难数据库(出版商)”最低求助积分说明 668469
邀请新用户注册赠送积分活动 655688