Semi-supervised learning with progressive unlabeled data excavation for label-efficient surgical workflow recognition

工作流程 计算机科学 边距(机器学习) 人工智能 注释 一致性(知识库) 机器学习 钥匙(锁) 领域知识 数据挖掘 模式识别(心理学) 数据库 计算机安全
作者
Xueying Shi,Yueming Jin,Qi Dou,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102158-102158 被引量:27
标识
DOI:10.1016/j.media.2021.102158
摘要

• A novel S emi- S upervised L earning method for label-efficient Surg ical workflow recognition ( SurgSSL ), which progressively utilizes unlabeled data in two learning stages, from implicit excavation to explicit excavation. • A novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme for implicit excavation from unlabeled data. By adding regularization from both visual and temporal perspectives, it encourages model to excavate motion cues from unlabeled videos. • Pre-knowledge pseudo label is designed to continue to optimize the model for explicit excavation from unlabeled data. With prior unlabeled data knowledge encoded for the Pre-knowledge pseudo label, it demonstrates more precise supervision capability compared with conventional pseudo labels. • Outstanding experimental results shown on two popular benchmark surgical phase recognition dataset demonstrate the effectiveness of our SurgSSL method. Surgical workflow recognition is a fundamental task in computer-assisted surgery and a key component of various applications in operating rooms. Existing deep learning models have achieved promising results for surgical workflow recognition, heavily relying on a large amount of annotated videos. However, obtaining annotation is time-consuming and requires the domain knowledge of surgeons. In this paper, we propose a novel two-stage S emi- S upervised L earning method for label-efficient Surg ical workflow recognition, named as SurgSSL . Our proposed SurgSSL progressively leverages the inherent knowledge held in the unlabeled data to a larger extent: from implicit unlabeled data excavation via motion knowledge excavation, to explicit unlabeled data excavation via pre-knowledge pseudo labeling. Specifically, we first propose a novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme for implicit excavation. It enforces prediction consistency of the same data under perturbations in both spatial and temporal spaces, encouraging model to capture rich motion knowledge. We further perform explicit excavation by optimizing the model towards our pre-knowledge pseudo label. It is naturally generated by the VTDC regularized model with prior knowledge of unlabeled data encoded, and demonstrates superior reliability for model supervision compared with the label generated by existing methods. We extensively evaluate our method on two public surgical datasets of Cholec80 and M2CAI challenge dataset. Our method surpasses the state-of-the-art semi-supervised methods by a large margin, e.g., improving 10.5% Accuracy under the severest annotation regime of M2CAI dataset. Using only 50% labeled videos on Cholec80, our approach achieves competitive performance compared with full-data training method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Betsy完成签到 ,获得积分10
刚刚
1秒前
辛儿的毅完成签到,获得积分20
1秒前
活泼山雁发布了新的文献求助10
1秒前
端端完成签到,获得积分10
1秒前
斯文败类应助三馬采纳,获得10
1秒前
1秒前
科研通AI6应助炙热尔烟采纳,获得10
2秒前
2秒前
机械小白完成签到,获得积分10
2秒前
3秒前
guijiu完成签到,获得积分10
3秒前
沙丁鹌鹑完成签到 ,获得积分10
3秒前
Lihuining发布了新的文献求助10
3秒前
4秒前
明小丽完成签到,获得积分10
4秒前
li完成签到,获得积分10
4秒前
4秒前
安详的沛菡完成签到,获得积分10
4秒前
vvillen完成签到,获得积分10
5秒前
Fayth完成签到,获得积分10
5秒前
微笑爆米花应助Saisaki采纳,获得10
5秒前
郭露露发布了新的文献求助10
5秒前
科目三应助yiyi采纳,获得10
6秒前
6秒前
馨怡关注了科研通微信公众号
6秒前
6秒前
老lili发布了新的文献求助10
6秒前
星辰大海应助风雨采纳,获得10
7秒前
lc完成签到,获得积分20
7秒前
AAA工位主理人完成签到,获得积分10
7秒前
keroro发布了新的文献求助10
7秒前
淡然惜雪发布了新的文献求助10
7秒前
阿能完成签到,获得积分20
8秒前
8秒前
kndfsfmf完成签到,获得积分10
8秒前
123456678完成签到,获得积分10
9秒前
momo应助曾无忧采纳,获得10
9秒前
追寻清完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017