Semi-supervised learning with progressive unlabeled data excavation for label-efficient surgical workflow recognition

工作流程 计算机科学 边距(机器学习) 人工智能 注释 一致性(知识库) 机器学习 钥匙(锁) 领域知识 数据挖掘 模式识别(心理学) 数据库 计算机安全
作者
Xueying Shi,Yueming Jin,Qi Dou,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102158-102158 被引量:27
标识
DOI:10.1016/j.media.2021.102158
摘要

• A novel S emi- S upervised L earning method for label-efficient Surg ical workflow recognition ( SurgSSL ), which progressively utilizes unlabeled data in two learning stages, from implicit excavation to explicit excavation. • A novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme for implicit excavation from unlabeled data. By adding regularization from both visual and temporal perspectives, it encourages model to excavate motion cues from unlabeled videos. • Pre-knowledge pseudo label is designed to continue to optimize the model for explicit excavation from unlabeled data. With prior unlabeled data knowledge encoded for the Pre-knowledge pseudo label, it demonstrates more precise supervision capability compared with conventional pseudo labels. • Outstanding experimental results shown on two popular benchmark surgical phase recognition dataset demonstrate the effectiveness of our SurgSSL method. Surgical workflow recognition is a fundamental task in computer-assisted surgery and a key component of various applications in operating rooms. Existing deep learning models have achieved promising results for surgical workflow recognition, heavily relying on a large amount of annotated videos. However, obtaining annotation is time-consuming and requires the domain knowledge of surgeons. In this paper, we propose a novel two-stage S emi- S upervised L earning method for label-efficient Surg ical workflow recognition, named as SurgSSL . Our proposed SurgSSL progressively leverages the inherent knowledge held in the unlabeled data to a larger extent: from implicit unlabeled data excavation via motion knowledge excavation, to explicit unlabeled data excavation via pre-knowledge pseudo labeling. Specifically, we first propose a novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme for implicit excavation. It enforces prediction consistency of the same data under perturbations in both spatial and temporal spaces, encouraging model to capture rich motion knowledge. We further perform explicit excavation by optimizing the model towards our pre-knowledge pseudo label. It is naturally generated by the VTDC regularized model with prior knowledge of unlabeled data encoded, and demonstrates superior reliability for model supervision compared with the label generated by existing methods. We extensively evaluate our method on two public surgical datasets of Cholec80 and M2CAI challenge dataset. Our method surpasses the state-of-the-art semi-supervised methods by a large margin, e.g., improving 10.5% Accuracy under the severest annotation regime of M2CAI dataset. Using only 50% labeled videos on Cholec80, our approach achieves competitive performance compared with full-data training method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
悦耳寒松发布了新的文献求助10
1秒前
1秒前
霍嘉文完成签到,获得积分10
1秒前
2秒前
bluesiryao发布了新的文献求助10
2秒前
李爱国应助23采纳,获得10
3秒前
3秒前
SHJ发布了新的文献求助10
3秒前
开心的幻柏完成签到 ,获得积分10
3秒前
大神完成签到 ,获得积分20
3秒前
3秒前
4秒前
4秒前
闪闪的YOSH完成签到,获得积分10
4秒前
Jimmy完成签到,获得积分10
4秒前
仁爱书白完成签到,获得积分10
5秒前
5秒前
孤独的珩发布了新的文献求助10
6秒前
孙悦完成签到,获得积分10
7秒前
lu完成签到,获得积分10
7秒前
Rachel发布了新的文献求助10
7秒前
Jimmy发布了新的文献求助10
7秒前
丘比特应助隐形的易巧采纳,获得10
7秒前
仁爱书白发布了新的文献求助10
8秒前
善学以致用应助zhui采纳,获得10
8秒前
8秒前
8秒前
小蘑菇应助拼搏起眸采纳,获得10
8秒前
山止川行完成签到 ,获得积分10
8秒前
8秒前
9秒前
okghy发布了新的文献求助10
9秒前
zcydbttj2011完成签到 ,获得积分10
9秒前
在水一方应助哈哈哈采纳,获得10
9秒前
9秒前
优美元枫完成签到,获得积分10
10秒前
11秒前
赵胜男完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794