Semi-supervised learning with progressive unlabeled data excavation for label-efficient surgical workflow recognition

工作流程 计算机科学 边距(机器学习) 人工智能 注释 一致性(知识库) 机器学习 钥匙(锁) 领域知识 数据挖掘 模式识别(心理学) 数据库 计算机安全
作者
Xueying Shi,Yueming Jin,Qi Dou,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102158-102158 被引量:27
标识
DOI:10.1016/j.media.2021.102158
摘要

• A novel S emi- S upervised L earning method for label-efficient Surg ical workflow recognition ( SurgSSL ), which progressively utilizes unlabeled data in two learning stages, from implicit excavation to explicit excavation. • A novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme for implicit excavation from unlabeled data. By adding regularization from both visual and temporal perspectives, it encourages model to excavate motion cues from unlabeled videos. • Pre-knowledge pseudo label is designed to continue to optimize the model for explicit excavation from unlabeled data. With prior unlabeled data knowledge encoded for the Pre-knowledge pseudo label, it demonstrates more precise supervision capability compared with conventional pseudo labels. • Outstanding experimental results shown on two popular benchmark surgical phase recognition dataset demonstrate the effectiveness of our SurgSSL method. Surgical workflow recognition is a fundamental task in computer-assisted surgery and a key component of various applications in operating rooms. Existing deep learning models have achieved promising results for surgical workflow recognition, heavily relying on a large amount of annotated videos. However, obtaining annotation is time-consuming and requires the domain knowledge of surgeons. In this paper, we propose a novel two-stage S emi- S upervised L earning method for label-efficient Surg ical workflow recognition, named as SurgSSL . Our proposed SurgSSL progressively leverages the inherent knowledge held in the unlabeled data to a larger extent: from implicit unlabeled data excavation via motion knowledge excavation, to explicit unlabeled data excavation via pre-knowledge pseudo labeling. Specifically, we first propose a novel intra-sequence Visual and Temporal Dynamic Consistency (VTDC) scheme for implicit excavation. It enforces prediction consistency of the same data under perturbations in both spatial and temporal spaces, encouraging model to capture rich motion knowledge. We further perform explicit excavation by optimizing the model towards our pre-knowledge pseudo label. It is naturally generated by the VTDC regularized model with prior knowledge of unlabeled data encoded, and demonstrates superior reliability for model supervision compared with the label generated by existing methods. We extensively evaluate our method on two public surgical datasets of Cholec80 and M2CAI challenge dataset. Our method surpasses the state-of-the-art semi-supervised methods by a large margin, e.g., improving 10.5% Accuracy under the severest annotation regime of M2CAI dataset. Using only 50% labeled videos on Cholec80, our approach achieves competitive performance compared with full-data training method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
1秒前
开放芮发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
可燃冰完成签到,获得积分10
3秒前
bhkwxdxy完成签到,获得积分10
3秒前
12完成签到 ,获得积分10
3秒前
3秒前
4秒前
奋斗永不停止完成签到 ,获得积分10
5秒前
桐桐应助柚子采纳,获得10
5秒前
祁缜发布了新的文献求助10
6秒前
Leo完成签到,获得积分10
6秒前
刘婧发布了新的文献求助10
6秒前
AH106应助小火苗采纳,获得10
6秒前
顾矜应助东方三问采纳,获得10
6秒前
ksl发布了新的文献求助10
6秒前
rrrrrrry完成签到,获得积分10
7秒前
Ys发布了新的文献求助10
7秒前
纯真电源完成签到,获得积分10
7秒前
丁真爱上芙蓉王完成签到,获得积分10
7秒前
TT发布了新的文献求助10
7秒前
8秒前
10秒前
大个应助王春焦采纳,获得10
10秒前
Jayavi完成签到,获得积分20
11秒前
积分完成签到,获得积分10
11秒前
大个应助纯真电源采纳,获得10
12秒前
小杭76应助zz采纳,获得10
12秒前
Jasper应助zz采纳,获得10
12秒前
刘婧完成签到,获得积分10
12秒前
12秒前
kk完成签到,获得积分10
12秒前
12秒前
糖豆完成签到,获得积分10
13秒前
14秒前
CodeCraft应助小猪彤彤采纳,获得10
14秒前
舒适以山发布了新的文献求助10
14秒前
Norcae完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723