催化作用
氧还原反应
氧还原
双金属片
析氧
过电位
作者
Jingyu Guan,Shaoxuan Yang,Tongtong Liu,Yihuan Yu,Jin Niu,Zhengping Zhang,Feng Wang
标识
DOI:10.1002/anie.202107437
摘要
The development of active and stable platinum (Pt)-based oxygen reduction reaction (ORR) electrocatalysts with good resistance to poisoning is a prerequisite for widespread practical application of fuel cells. An effective strategy for enhancing the electrocatalytic performance is to tune or control the physicochemical state of the Pt surface. Herein, we show a general surface-engineering approach to prepare a range of nanostructured Pt alloys by coating with alloy PtBi shells. FePt@PtBi core-shell nanoparticles showed the best ORR performance with a mass activity of 0.96 A mgPt-1 and a specific activity of 2.06 mA cm-2 , respectively 7 times and 11 times those of the corresponding values for benchmark Pt/C. Moreover, FePt@PtBi shows much better tolerance to methanol and carbon monoxide than conventional Pt-based electrocatalysts. The observed comprehensive enhancement in ORR performance of FePt@PtBi can be attributed to the increased compressive strain of the Pt surface due to in-plane shearing resulting from the presence of the large Bi atoms in the surface-structured PtBi overlayers, as well as charge displacement via Pt-Bi bonding which mitigates crossover issues.
科研通智能强力驱动
Strongly Powered by AbleSci AI