自动微分
各向异性
反演(地质)
人工神经网络
波形
各向同性
计算机科学
数学分析
横观各向同性
算法
地质学
数学
物理
光学
人工智能
电信
构造盆地
古生物学
计算
雷达
作者
Wenlong Wang,George A. McMechan,Jianwei Ma
出处
期刊:Geophysics
[Society of Exploration Geophysicists]
日期:2021-09-24
卷期号:86 (6): R795-R810
被引量:16
标识
DOI:10.1190/geo2020-0542.1
摘要
We have implemented multiparameter full-waveform inversions (FWIs) in the framework of recurrent neural networks in elastic isotropic and transversely isotropic media. A staggered-grid velocity-stress scheme is used to solve the first-order elastodynamic equations for forward modeling. The gradients of loss with respect to model parameters are obtained by automatic differentiation. Multiple elastic model parameters are simultaneously inverted with a minibatch optimizer. We prove the equivalency of full-batch automatic differentiation and the conventional adjoint-state method for inversions in elastic isotropic media. Synthetic tests on elastic isotropic models show that the minibatch configuration has a better convergence rate and higher inversion accuracy than full-batch elastic FWIs. Inversions with data that contain incoherent and coherent noise are tested, respectively. With automatic differentiation, we determine the ease of extension to anisotropic media with two parameterizations, and the potential to implement it for more general media.
科研通智能强力驱动
Strongly Powered by AbleSci AI