合成子
纳米技术
化学
芴
钻石
立体化学
材料科学
聚合物
有机化学
作者
Ying Wei,Yang Li,Dongqing Lin,Dong Jin,Xue Du,Chunxiao Zhong,Ping Zhou,Yue Sun,Linghai Xie,Wei Huang
摘要
Regular or well-defined nanogrids with atomically precise extension sites offer an opportunity for covalent nano-architectures as well as frameworks. Previously, we discovered organic nanogrids based on the 2,7-linkage of fluorene via Friedel-Crafts gridization. However, the regularity of nanogrids is not always based on the actual molecular backbone, which leads to ineffective linkage for the more regular complex nanogrids such as nano-windows. Herein, we report the introduction of spirobifluorene, which has more orthogonal shapes, to fix the backbone of nanogridons with regards to the diarylfluorenes. The diamond-type nanogridons (DGs) obtained as a result have the potential feature of cross extension, which is different from their ladder-type counterparts, although they both have four well-defined extension sites. In order to screen efficient monogridon modules, we designed two types of DGs (spiro[fluorene-9,8'-indeno[2,1-b]thiophene] (SFIT)-based DGs-1 and spirobifluorene-based DGs-2) and compared their synthetic routes. The results show that the Friedel-Crafts (F-C) gridization of the A1B1 synthon (A1B1 mode) offers DGs-1 in 44-50% yields, while the F-C gridization of A2 + B2 synthons (A2 + B2 mode) is more efficient and gives DGs-2 in 64% yield. Furthermore, unlike in the A1B1 mode, the dehydroxylated byproduct and linear polymers were not observed in the A2 + B2 mode.
科研通智能强力驱动
Strongly Powered by AbleSci AI