已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robust Fuzzy K-Means Clustering With Shrunk Patterns Learning

聚类分析 计算机科学 相关聚类 人工智能 CURE数据聚类算法 模糊聚类 模式识别(心理学) 模糊逻辑 火焰团簇 噪音(视频) 数据挖掘 约束聚类 图像(数学)
作者
Xiaowei Zhao,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:16
标识
DOI:10.1109/tkde.2021.3116257
摘要

Fuzzy K-Means (FKM) clustering regards each cluster as a fuzzy set and assigns each sample to multiple clusters with a certain degree of membership. However, conventional FKM methods perform clustering on original data directly where the intrinsic structure of data may be corrupted by the noise. According, the performance of these methods would be challenged. In this paper, we present a novel fuzzy K-Means clustering model to conduct clustering tasks on the flexible manifold. Technically, we perform fuzzy clustering based on the shrunk patterns which have desired manifold structure. The shrunk patterns can be viewed as an approximation to the original data; and a penalty term is employed to measure the mismatch between them. Moreover, we integrate the learning of shrunk patterns and the learning of membership degree between shrunk patterns and clusters into a unified framework. Furthermore, we extend the proposed model for projected FKM clustering to find a suitable subspace to fit the non-linear manifold structure of data, reduce the interference of the noise and redundant features and gather homogeneous samples together simultaneously. Two alternating iterative algorithms are derived to solve these two models, respectively. Extensive experimental results demonstrate the feasibility and effectiveness of our proposed clustering algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pl完成签到 ,获得积分10
1秒前
4秒前
江离完成签到 ,获得积分10
7秒前
炙热念双完成签到 ,获得积分10
8秒前
8秒前
研友_LwlRen完成签到 ,获得积分10
12秒前
夜话风陵杜完成签到 ,获得积分0
14秒前
懒羊羊大王完成签到 ,获得积分10
16秒前
luckin完成签到,获得积分10
17秒前
23秒前
27秒前
28秒前
研友_RLNj6L发布了新的文献求助10
28秒前
29秒前
柒月发布了新的文献求助10
32秒前
cxwong发布了新的文献求助10
34秒前
starry完成签到 ,获得积分10
39秒前
41秒前
走冰莫吉托完成签到,获得积分10
41秒前
nav完成签到 ,获得积分10
41秒前
cxwong完成签到,获得积分20
42秒前
爱吃饼干的鱼完成签到,获得积分10
44秒前
44秒前
gk123kk完成签到,获得积分10
44秒前
luckin发布了新的文献求助10
47秒前
战神林北完成签到,获得积分10
47秒前
雨林发布了新的文献求助10
51秒前
酷波er应助欧大大采纳,获得10
52秒前
54秒前
56秒前
1分钟前
lixia完成签到 ,获得积分10
1分钟前
领导范儿应助cxwong采纳,获得10
1分钟前
称无科发布了新的文献求助10
1分钟前
勤恳的心情完成签到,获得积分10
1分钟前
wanci应助纯真的血茗采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI2S应助繁荣的又夏采纳,获得10
1分钟前
Sky完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310991
求助须知:如何正确求助?哪些是违规求助? 2943859
关于积分的说明 8516539
捐赠科研通 2619121
什么是DOI,文献DOI怎么找? 1432089
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802