化学
共价键
电泳剂
组合化学
半胱氨酸
结合
布鲁顿酪氨酸激酶
配体(生物化学)
取代基
反应性(心理学)
立体化学
生物化学
有机化学
酪氨酸激酶
酶
信号转导
替代医学
病理
受体
催化作用
数学分析
医学
数学
作者
Rambabu Reddi,Efrat Resnick,Adi Rogel,Boddu Venkateswara Rao,Ronen Gabizon,Kim Goldenberg,Neta Gurwicz,Daniel Zaidman,A.N. Plotnikov,Haim Barr,Ziv Shulman,Nir London
摘要
Targeted covalent inhibitors are an important class of drugs and chemical probes. However, relatively few electrophiles meet the criteria for successful covalent inhibitor design. Here we describe α-substituted methacrylamides as a new class of electrophiles suitable for targeted covalent inhibitors. While typically α-substitutions inactivate acrylamides, we show that hetero α-substituted methacrylamides have higher thiol reactivity and undergo a conjugated addition–elimination reaction ultimately releasing the substituent. Their reactivity toward thiols is tunable and correlates with the pKa/pKb of the leaving group. In the context of the BTK inhibitor ibrutinib, these electrophiles showed lower intrinsic thiol reactivity than the unsubstituted ibrutinib acrylamide. This translated to comparable potency in protein labeling, in vitro kinase assays, and functional cellular assays, with improved selectivity. The conjugate addition–elimination reaction upon covalent binding to their target cysteine allows functionalizing α-substituted methacrylamides as turn-on probes. To demonstrate this, we prepared covalent ligand directed release (CoLDR) turn-on fluorescent probes for BTK, EGFR, and K-RasG12C. We further demonstrate a BTK CoLDR chemiluminescent probe that enabled a high-throughput screen for BTK inhibitors. Altogether we show that α-substituted methacrylamides represent a new and versatile addition to the toolbox of targeted covalent inhibitor design.
科研通智能强力驱动
Strongly Powered by AbleSci AI