差别隐私
计算机科学
协议(科学)
拉普拉斯变换
理论计算机科学
工作(物理)
差速器(机械装置)
算法
数学
医学
机械工程
数学分析
替代医学
病理
工程类
航空航天工程
作者
Badih Ghazi,Ravi Kumar,Pasin Manurangsi,Rasmus Pagh,Amer Sinha
出处
期刊:International Conference on Machine Learning
日期:2021-07-18
卷期号:: 3692-3701
被引量:4
摘要
The shuffle model of differential privacy has attracted attention in the literature due to it being a middle ground between the well-studied central and local models. In this work, we study the problem of summing (aggregating) real numbers or integers, a basic primitive in numerous machine learning tasks, in the shuffle model. We give a protocol achieving error arbitrarily close to that of the (Discrete) Laplace mechanism in the central model, while each user only sends $1 + o(1)$ short messages in expectation.
科研通智能强力驱动
Strongly Powered by AbleSci AI