清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder

过度拟合 计算机科学 功能磁共振成像 Lasso(编程语言) 人工智能 自编码 人类连接体项目 深度学习 人工神经网络 静息状态功能磁共振成像 模式识别(心理学) 循环神经网络 机器学习 编码器 功能连接 神经科学 万维网 生物 操作系统
作者
Ning Qiang,Qinglin Dong,Hongtao Liang,Bao Ge,Shu Zhang,Yifei Sun,Cheng Zhang,Wei Zhang,Jie Gao,Tianming Liu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 0460b6-0460b6 被引量:24
标识
DOI:10.1088/1741-2552/ac1179
摘要

Objective. Recently, deep learning models have been successfully applied in functional magnetic resonance imaging (fMRI) modeling and associated applications. However, there still exist at least two challenges. Firstly, due to the lack of sufficient data, deep learning models tend to suffer from overfitting in the training process. Secondly, it is still challenging to model the temporal dynamics from fMRI, due to that the brain state is continuously changing over scan time. In addition, existing methods rarely studied and applied fMRI data augmentation. Approach. In this work, we construct a deep recurrent variational auto-encoder (DRVAE) that combined variational auto-encoder and recurrent neural network, aiming to address all of the above mentioned challenges. The encoder of DRVAE can extract more generalized temporal features from assumed Gaussian distribution of input data, and the decoder of DRVAE can generate new data to increase training samples and thus partially relieve the overfitting issue. The recurrent layers in DRVAE are designed to effectively model the temporal dynamics of functional brain activities. LASSO (least absolute shrinkage and selection operator) regression is applied on the temporal features and input fMRI data to estimate the corresponding spatial networks. Main results. Extensive experimental results on seven tasks from HCP dataset showed that the DRVAE and LASSO framework can learn meaningful temporal patterns and spatial networks from both real data and generated data. The results on group-wise data and single subject suggest that the brain activities may follow certain distribution. Moreover, we applied DRVAE on four resting state fMRI datasets from ADHD-200 for data augmentation, and the results showed that the classification performances on augmented datasets have been considerably improved. Significance. The proposed method can not only derive meaningful temporal features and spatial networks from fMRI, but also generate high-quality new data for fMRI data augmentation and associated applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
路过完成签到 ,获得积分10
31秒前
笨笨完成签到 ,获得积分10
39秒前
chichenglin完成签到 ,获得积分10
44秒前
racill完成签到 ,获得积分10
45秒前
xiaosang0619完成签到,获得积分10
48秒前
彩色的芷容完成签到 ,获得积分10
52秒前
fogsea完成签到,获得积分0
55秒前
合适醉蝶完成签到 ,获得积分10
58秒前
zhaoyu完成签到 ,获得积分10
1分钟前
LeoBigman完成签到 ,获得积分10
1分钟前
myq完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
DJ_Tokyo完成签到,获得积分10
1分钟前
平淡访冬完成签到 ,获得积分10
1分钟前
1分钟前
橙汁摇一摇完成签到 ,获得积分10
2分钟前
ARIA完成签到 ,获得积分10
2分钟前
aimanqiankun55完成签到 ,获得积分10
2分钟前
2分钟前
卷卷心发布了新的文献求助30
2分钟前
瘦瘦发布了新的文献求助20
2分钟前
zzgpku完成签到,获得积分0
2分钟前
红茸茸羊完成签到 ,获得积分10
2分钟前
666完成签到 ,获得积分0
3分钟前
王多肉完成签到,获得积分10
3分钟前
Lillianzhu1完成签到,获得积分10
3分钟前
222完成签到,获得积分10
3分钟前
yzhilson完成签到 ,获得积分10
3分钟前
可爱的函函应助瘦瘦采纳,获得10
4分钟前
zijingsy完成签到 ,获得积分10
4分钟前
ECHO完成签到,获得积分10
4分钟前
小王完成签到 ,获得积分10
4分钟前
clock完成签到 ,获得积分10
4分钟前
jin完成签到,获得积分10
4分钟前
ChatGPT完成签到,获得积分10
4分钟前
栗荔完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839