Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder

过度拟合 计算机科学 功能磁共振成像 Lasso(编程语言) 人工智能 自编码 人类连接体项目 深度学习 人工神经网络 静息状态功能磁共振成像 模式识别(心理学) 循环神经网络 机器学习 编码器 功能连接 万维网 神经科学 操作系统 生物
作者
Ning Qiang,Qinglin Dong,Hongtao Liang,Bao Ge,Shu Zhang,Yifei Sun,Cheng Zhang,Wei Zhang,Jie Gao,Tianming Liu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 0460b6-0460b6 被引量:24
标识
DOI:10.1088/1741-2552/ac1179
摘要

Objective. Recently, deep learning models have been successfully applied in functional magnetic resonance imaging (fMRI) modeling and associated applications. However, there still exist at least two challenges. Firstly, due to the lack of sufficient data, deep learning models tend to suffer from overfitting in the training process. Secondly, it is still challenging to model the temporal dynamics from fMRI, due to that the brain state is continuously changing over scan time. In addition, existing methods rarely studied and applied fMRI data augmentation. Approach. In this work, we construct a deep recurrent variational auto-encoder (DRVAE) that combined variational auto-encoder and recurrent neural network, aiming to address all of the above mentioned challenges. The encoder of DRVAE can extract more generalized temporal features from assumed Gaussian distribution of input data, and the decoder of DRVAE can generate new data to increase training samples and thus partially relieve the overfitting issue. The recurrent layers in DRVAE are designed to effectively model the temporal dynamics of functional brain activities. LASSO (least absolute shrinkage and selection operator) regression is applied on the temporal features and input fMRI data to estimate the corresponding spatial networks. Main results. Extensive experimental results on seven tasks from HCP dataset showed that the DRVAE and LASSO framework can learn meaningful temporal patterns and spatial networks from both real data and generated data. The results on group-wise data and single subject suggest that the brain activities may follow certain distribution. Moreover, we applied DRVAE on four resting state fMRI datasets from ADHD-200 for data augmentation, and the results showed that the classification performances on augmented datasets have been considerably improved. Significance. The proposed method can not only derive meaningful temporal features and spatial networks from fMRI, but also generate high-quality new data for fMRI data augmentation and associated applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助斯文黎云采纳,获得10
1秒前
拼搏向上发布了新的文献求助200
1秒前
2秒前
Amy完成签到 ,获得积分10
3秒前
3秒前
满满发布了新的文献求助10
4秒前
陆吉完成签到,获得积分10
4秒前
4秒前
4秒前
HQQ发布了新的文献求助10
5秒前
6秒前
Mecury完成签到,获得积分10
6秒前
马宁发布了新的文献求助10
6秒前
屈洪娇发布了新的文献求助10
7秒前
柯尔丝完成签到 ,获得积分10
7秒前
7秒前
星辰大海应助Yulei_Qian采纳,获得10
7秒前
科研通AI6应助孙颖雨采纳,获得10
8秒前
芷兰丁香发布了新的文献求助10
9秒前
古月胡发布了新的文献求助10
10秒前
余一台完成签到,获得积分10
11秒前
11秒前
13秒前
科研通AI6应助linguo采纳,获得50
14秒前
星河zp完成签到 ,获得积分10
15秒前
屈洪娇完成签到,获得积分20
16秒前
16秒前
33发布了新的文献求助30
18秒前
18秒前
虚幻的捕完成签到,获得积分10
18秒前
Regulus完成签到 ,获得积分10
18秒前
皮皮完成签到 ,获得积分10
18秒前
迷人宛完成签到 ,获得积分10
20秒前
鲤鱼诗桃完成签到,获得积分10
21秒前
君衡完成签到 ,获得积分10
21秒前
漂亮夏兰发布了新的文献求助10
23秒前
24秒前
科目三应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353187
求助须知:如何正确求助?哪些是违规求助? 4485831
关于积分的说明 13964569
捐赠科研通 4386047
什么是DOI,文献DOI怎么找? 2409731
邀请新用户注册赠送积分活动 1402013
关于科研通互助平台的介绍 1375783