Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder

过度拟合 计算机科学 功能磁共振成像 Lasso(编程语言) 人工智能 自编码 人类连接体项目 深度学习 人工神经网络 静息状态功能磁共振成像 模式识别(心理学) 循环神经网络 机器学习 编码器 功能连接 神经科学 万维网 生物 操作系统
作者
Ning Qiang,Qinglin Dong,Hongtao Liang,Bao Ge,Shu Zhang,Yifei Sun,Cheng Zhang,Wei Zhang,Jie Gao,Tianming Liu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 0460b6-0460b6 被引量:24
标识
DOI:10.1088/1741-2552/ac1179
摘要

Objective. Recently, deep learning models have been successfully applied in functional magnetic resonance imaging (fMRI) modeling and associated applications. However, there still exist at least two challenges. Firstly, due to the lack of sufficient data, deep learning models tend to suffer from overfitting in the training process. Secondly, it is still challenging to model the temporal dynamics from fMRI, due to that the brain state is continuously changing over scan time. In addition, existing methods rarely studied and applied fMRI data augmentation. Approach. In this work, we construct a deep recurrent variational auto-encoder (DRVAE) that combined variational auto-encoder and recurrent neural network, aiming to address all of the above mentioned challenges. The encoder of DRVAE can extract more generalized temporal features from assumed Gaussian distribution of input data, and the decoder of DRVAE can generate new data to increase training samples and thus partially relieve the overfitting issue. The recurrent layers in DRVAE are designed to effectively model the temporal dynamics of functional brain activities. LASSO (least absolute shrinkage and selection operator) regression is applied on the temporal features and input fMRI data to estimate the corresponding spatial networks. Main results. Extensive experimental results on seven tasks from HCP dataset showed that the DRVAE and LASSO framework can learn meaningful temporal patterns and spatial networks from both real data and generated data. The results on group-wise data and single subject suggest that the brain activities may follow certain distribution. Moreover, we applied DRVAE on four resting state fMRI datasets from ADHD-200 for data augmentation, and the results showed that the classification performances on augmented datasets have been considerably improved. Significance. The proposed method can not only derive meaningful temporal features and spatial networks from fMRI, but also generate high-quality new data for fMRI data augmentation and associated applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
高兴诗云应助沐梦采纳,获得10
2秒前
3秒前
帅仁123发布了新的文献求助10
3秒前
4秒前
5秒前
科研通AI2S应助三又一十八采纳,获得10
5秒前
5秒前
5秒前
生动茗茗完成签到,获得积分10
5秒前
陈大碗发布了新的文献求助10
5秒前
一颗小圆圆完成签到,获得积分10
5秒前
xiao发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助200
6秒前
6秒前
舒服的牛排完成签到 ,获得积分10
6秒前
雪白梦容发布了新的文献求助10
6秒前
务实时光发布了新的文献求助10
6秒前
7秒前
乐乐应助韩1234采纳,获得10
8秒前
解语花发布了新的文献求助10
8秒前
lzx完成签到,获得积分10
8秒前
8秒前
8秒前
柠檬发布了新的文献求助20
9秒前
快乐映秋完成签到,获得积分10
9秒前
yyy发布了新的文献求助10
9秒前
高乾飞完成签到,获得积分10
9秒前
星星发布了新的文献求助10
11秒前
11秒前
11秒前
寄偶发布了新的文献求助10
12秒前
科研通AI5应助伶俐柔采纳,获得30
12秒前
amberzyc发布了新的文献求助10
12秒前
熊猫小肿完成签到,获得积分10
13秒前
小摩托完成签到,获得积分20
13秒前
芝士小熊发布了新的文献求助10
13秒前
lyz发布了新的文献求助30
14秒前
Cuillli发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701