Modeling and augmenting of fMRI data using deep recurrent variational auto-encoder

过度拟合 计算机科学 功能磁共振成像 Lasso(编程语言) 人工智能 自编码 人类连接体项目 深度学习 人工神经网络 静息状态功能磁共振成像 模式识别(心理学) 循环神经网络 机器学习 编码器 功能连接 神经科学 万维网 生物 操作系统
作者
Ning Qiang,Qinglin Dong,Hongtao Liang,Bao Ge,Shu Zhang,Yifei Sun,Cheng Zhang,Wei Zhang,Jie Gao,Tianming Liu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 0460b6-0460b6 被引量:24
标识
DOI:10.1088/1741-2552/ac1179
摘要

Objective. Recently, deep learning models have been successfully applied in functional magnetic resonance imaging (fMRI) modeling and associated applications. However, there still exist at least two challenges. Firstly, due to the lack of sufficient data, deep learning models tend to suffer from overfitting in the training process. Secondly, it is still challenging to model the temporal dynamics from fMRI, due to that the brain state is continuously changing over scan time. In addition, existing methods rarely studied and applied fMRI data augmentation. Approach. In this work, we construct a deep recurrent variational auto-encoder (DRVAE) that combined variational auto-encoder and recurrent neural network, aiming to address all of the above mentioned challenges. The encoder of DRVAE can extract more generalized temporal features from assumed Gaussian distribution of input data, and the decoder of DRVAE can generate new data to increase training samples and thus partially relieve the overfitting issue. The recurrent layers in DRVAE are designed to effectively model the temporal dynamics of functional brain activities. LASSO (least absolute shrinkage and selection operator) regression is applied on the temporal features and input fMRI data to estimate the corresponding spatial networks. Main results. Extensive experimental results on seven tasks from HCP dataset showed that the DRVAE and LASSO framework can learn meaningful temporal patterns and spatial networks from both real data and generated data. The results on group-wise data and single subject suggest that the brain activities may follow certain distribution. Moreover, we applied DRVAE on four resting state fMRI datasets from ADHD-200 for data augmentation, and the results showed that the classification performances on augmented datasets have been considerably improved. Significance. The proposed method can not only derive meaningful temporal features and spatial networks from fMRI, but also generate high-quality new data for fMRI data augmentation and associated applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjuroc完成签到,获得积分10
刚刚
Sweger完成签到,获得积分10
刚刚
bkagyin应助蹦蹦采纳,获得10
刚刚
有机酸完成签到,获得积分10
1秒前
今后应助沉静秋尽采纳,获得10
1秒前
羊角包完成签到,获得积分20
1秒前
2秒前
无花果应助lll采纳,获得10
2秒前
MZY关闭了MZY文献求助
2秒前
牧青完成签到,获得积分20
2秒前
唯馨馨发布了新的文献求助10
3秒前
褚浩然完成签到,获得积分10
3秒前
坚定以筠完成签到,获得积分20
4秒前
善学以致用应助yesmola采纳,获得10
6秒前
6秒前
羊角包发布了新的文献求助20
7秒前
YuGe完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
CipherSage应助静然采纳,获得10
10秒前
11秒前
11秒前
在水一方应助SR4采纳,获得10
12秒前
大个应助Skylar采纳,获得10
13秒前
蹦蹦发布了新的文献求助10
13秒前
JM完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
lll发布了新的文献求助10
16秒前
沉静秋尽发布了新的文献求助10
17秒前
稚气满满发布了新的文献求助10
18秒前
搜集达人应助wby0313采纳,获得10
18秒前
squirrelcone完成签到 ,获得积分10
18秒前
坚强的严青应助朴次次采纳,获得100
19秒前
魑魅魍魉发布了新的文献求助10
19秒前
20秒前
feizhuliu发布了新的文献求助10
20秒前
默默的爆米花完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161332
求助须知:如何正确求助?哪些是违规求助? 2812743
关于积分的说明 7896558
捐赠科研通 2471616
什么是DOI,文献DOI怎么找? 1316066
科研通“疑难数据库(出版商)”最低求助积分说明 631106
版权声明 602112