A Mutual Attention Model for Drug Target Binding Affinity Prediction

计算机科学 机器学习 水准点(测量) 遮罩(插图) 人工智能 药物靶点 相互信息 班级(哲学) 大地测量学 医学 药理学 艺术 视觉艺术 地理
作者
Nassima Aleb
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tcbb.2021.3121275
摘要

Vrious machine learning approaches have been developed for drug-target interaction (DTI) prediction. One class of these approaches, DTBA, is interested in Drug-Target Binding Affinity strength, rather than focusing merely on the presence or absence of interaction. Several machine learning methods have been developed for this purpose. However, almost all depend heavily on the use of increasingly sophisticated inputs to improve their performance. In addition, these methods do not allow any analysis or interpretation due to their black-box characteristic. This work is an attempt to overcome these limitations by taking advantage of the use of attention mechanisms with convolution models. In this paper, we define a new mutual attention based model for DTBA prediction. We represent both compounds and targets by sequences. Our model starts by aligning the drug-target pairs, then a learned masking is performed to retain the most promising regions, of both sequences, and amplify them with a learned factor in such a way to make the learning focus more on them. We evaluate the performance of our method on two benchmark datasets, KIBA and Davis. The results show that our mutual attention approach is very effective. Compared to other well-known approaches, it achieved excellent results regarding the considered performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
2秒前
ZERO完成签到,获得积分10
2秒前
ggbond发布了新的文献求助10
2秒前
3秒前
豆浆油条发布了新的文献求助10
3秒前
jack完成签到,获得积分10
3秒前
曾金福完成签到,获得积分10
3秒前
温汽水完成签到,获得积分10
3秒前
ymh完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
zjy发布了新的文献求助10
7秒前
124完成签到,获得积分10
7秒前
7秒前
8秒前
慕青应助lcm采纳,获得10
8秒前
小张要发论文完成签到,获得积分10
10秒前
10秒前
10秒前
张张完成签到,获得积分10
10秒前
11秒前
SciGPT应助神奇红桃三采纳,获得10
11秒前
124发布了新的文献求助10
12秒前
可夫司机发布了新的文献求助10
12秒前
贪玩的月饼完成签到 ,获得积分10
13秒前
13秒前
14秒前
共享精神应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
烟花应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152657
求助须知:如何正确求助?哪些是违规求助? 2803891
关于积分的说明 7856198
捐赠科研通 2461571
什么是DOI,文献DOI怎么找? 1310444
科研通“疑难数据库(出版商)”最低求助积分说明 629205
版权声明 601782