A Mutual Attention Model for Drug Target Binding Affinity Prediction

计算机科学 机器学习 水准点(测量) 遮罩(插图) 人工智能 药物靶点 相互信息 班级(哲学) 大地测量学 医学 药理学 艺术 视觉艺术 地理
作者
Nassima Aleb
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tcbb.2021.3121275
摘要

Vrious machine learning approaches have been developed for drug-target interaction (DTI) prediction. One class of these approaches, DTBA, is interested in Drug-Target Binding Affinity strength, rather than focusing merely on the presence or absence of interaction. Several machine learning methods have been developed for this purpose. However, almost all depend heavily on the use of increasingly sophisticated inputs to improve their performance. In addition, these methods do not allow any analysis or interpretation due to their black-box characteristic. This work is an attempt to overcome these limitations by taking advantage of the use of attention mechanisms with convolution models. In this paper, we define a new mutual attention based model for DTBA prediction. We represent both compounds and targets by sequences. Our model starts by aligning the drug-target pairs, then a learned masking is performed to retain the most promising regions, of both sequences, and amplify them with a learned factor in such a way to make the learning focus more on them. We evaluate the performance of our method on two benchmark datasets, KIBA and Davis. The results show that our mutual attention approach is very effective. Compared to other well-known approaches, it achieved excellent results regarding the considered performance metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slience发布了新的文献求助10
刚刚
标致香完成签到,获得积分10
2秒前
orixero应助wennnnn采纳,获得10
2秒前
文艺的冬日完成签到,获得积分10
3秒前
cookies12发布了新的文献求助10
3秒前
bu完成签到,获得积分10
4秒前
4秒前
ldy完成签到,获得积分10
8秒前
slience完成签到,获得积分10
9秒前
11秒前
cookies12完成签到,获得积分10
12秒前
14秒前
14秒前
爆米花应助wasailinlaomu采纳,获得10
16秒前
脑洞疼应助都美秋采纳,获得10
16秒前
18秒前
dong发布了新的文献求助10
18秒前
秀丽奎完成签到 ,获得积分10
18秒前
123456完成签到,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
科研通AI2S应助xdc采纳,获得10
20秒前
隐形曼青应助xdc采纳,获得10
20秒前
SciGPT应助数星星采纳,获得10
21秒前
Slkled发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
1212发布了新的文献求助10
25秒前
27秒前
英俊小蘑菇完成签到 ,获得积分10
27秒前
28秒前
caitSith发布了新的文献求助10
28秒前
29秒前
都美秋发布了新的文献求助10
30秒前
31秒前
claud发布了新的文献求助20
31秒前
量子星尘发布了新的文献求助10
32秒前
xuxuxu完成签到 ,获得积分10
32秒前
金条完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861