Optimal capacity configuration of CCHP system with improved operation strategies using improved multi-objective multi-universe algorithm

计算机科学 数学优化 帕累托原理 多目标优化 电力系统 电力负荷 理想溶液 功率(物理) 数学 量子力学 热力学 物理
作者
Chao Fu,Kuo-Ping Lin,Yatong Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:199: 117183-117183 被引量:5
标识
DOI:10.1016/j.eswa.2022.117183
摘要

In this study, a multi-objective capacity optimization model for a combined cooling, heating, and power (CCHP) system is established, to determine the optimal configuration scheme for various strategies. We develop improved-following-the-thermal-load (IFTL) and improved-following-the-electric-load (IFEL) strategies to properly manage the energy flow. Under the IFTL and IFEL strategies, the redundant energy generated in the operation of CCHP system is fully utilized, which effectively reduces the fuel consumption and improves the energy efficiency of the system. Furthermore, an improved multi-objective multi-verse optimization (IMOMVO) algorithm—which can effectively optimize the configuration of the CCHP system under different strategies—is proposed; it incorporates an opposition-based learning mechanism, dominance rank, population-guidance mechanism, and seagull attacking operator into the conventional MOMVO algorithm. The optimal solution of each strategy under energy, economy, and environment objective functions can be obtained using the Technique for Order of Preference by Similarity to Ideal Solution. A large hotel equipped with CCHP systems operating under IFTL, IFEL, following-the-thermal-load, following-the-electric-load, and following-the-hybrid-electric–thermal-load strategies are examined. The results demonstrate that the Pareto solutions obtained using proposed IMOMVO algorithm are evenly distributed and can provide a set of representative solutions; furthermore, the system configuration under the proposed IFEL strategy can achieve energy efficiency, carbon-dioxide-emission-reductions, primary energy saving, and annual-cost-saving ratios of 67.09%, 47.91%, 31.65%, and 14.94%, respectively; therefore, it outperforms other strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fxxkme发布了新的文献求助10
1秒前
1秒前
thynkz完成签到,获得积分10
1秒前
饺子完成签到,获得积分10
1秒前
Forest发布了新的文献求助10
2秒前
2秒前
干净的一手完成签到,获得积分20
2秒前
左白易发布了新的文献求助10
2秒前
qq小兵完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Migue应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
3秒前
Henry应助科研通管家采纳,获得200
3秒前
慕青应助科研通管家采纳,获得10
3秒前
SC30发布了新的文献求助10
3秒前
啦啦啦啦德玛西亚完成签到,获得积分10
3秒前
你大米哥完成签到 ,获得积分10
3秒前
3秒前
科研通AI2S应助Yara.H采纳,获得10
4秒前
5秒前
6秒前
斯文败类应助研ZZ采纳,获得10
6秒前
Spectator完成签到,获得积分10
6秒前
酷波er应助ss1234ning采纳,获得10
6秒前
左白易完成签到,获得积分10
7秒前
grmqgq完成签到,获得积分10
7秒前
awen发布了新的文献求助30
7秒前
Sun1c7发布了新的文献求助10
7秒前
micpeach发布了新的文献求助10
9秒前
kqier完成签到,获得积分10
9秒前
彭于晏应助云云的困困采纳,获得10
10秒前
淡然发布了新的文献求助10
10秒前
12秒前
13秒前
完美世界应助SC30采纳,获得10
13秒前
13秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147888
求助须知:如何正确求助?哪些是违规求助? 2798879
关于积分的说明 7832212
捐赠科研通 2455931
什么是DOI,文献DOI怎么找? 1307018
科研通“疑难数据库(出版商)”最低求助积分说明 627959
版权声明 601587