Optimal capacity configuration of CCHP system with improved operation strategies using improved multi-objective multi-universe algorithm

计算机科学 数学优化 帕累托原理 多目标优化 电力系统 电力负荷 理想溶液 功率(物理) 数学 量子力学 热力学 物理
作者
Chao Fu,Kuo-Ping Lin,Yatong Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:199: 117183-117183 被引量:5
标识
DOI:10.1016/j.eswa.2022.117183
摘要

In this study, a multi-objective capacity optimization model for a combined cooling, heating, and power (CCHP) system is established, to determine the optimal configuration scheme for various strategies. We develop improved-following-the-thermal-load (IFTL) and improved-following-the-electric-load (IFEL) strategies to properly manage the energy flow. Under the IFTL and IFEL strategies, the redundant energy generated in the operation of CCHP system is fully utilized, which effectively reduces the fuel consumption and improves the energy efficiency of the system. Furthermore, an improved multi-objective multi-verse optimization (IMOMVO) algorithm—which can effectively optimize the configuration of the CCHP system under different strategies—is proposed; it incorporates an opposition-based learning mechanism, dominance rank, population-guidance mechanism, and seagull attacking operator into the conventional MOMVO algorithm. The optimal solution of each strategy under energy, economy, and environment objective functions can be obtained using the Technique for Order of Preference by Similarity to Ideal Solution. A large hotel equipped with CCHP systems operating under IFTL, IFEL, following-the-thermal-load, following-the-electric-load, and following-the-hybrid-electric–thermal-load strategies are examined. The results demonstrate that the Pareto solutions obtained using proposed IMOMVO algorithm are evenly distributed and can provide a set of representative solutions; furthermore, the system configuration under the proposed IFEL strategy can achieve energy efficiency, carbon-dioxide-emission-reductions, primary energy saving, and annual-cost-saving ratios of 67.09%, 47.91%, 31.65%, and 14.94%, respectively; therefore, it outperforms other strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分10
1秒前
1秒前
swsx1317发布了新的文献求助10
2秒前
camellia发布了新的文献求助10
2秒前
拼搏思卉发布了新的文献求助10
2秒前
captin发布了新的文献求助10
2秒前
lzzj完成签到,获得积分10
2秒前
yannis2020发布了新的文献求助10
2秒前
孤独秋白完成签到,获得积分10
2秒前
安详绿草发布了新的文献求助10
2秒前
喵喵完成签到 ,获得积分10
2秒前
楼寒天发布了新的文献求助10
3秒前
陈陌陌完成签到,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得20
4秒前
丘比特应助标致小伙采纳,获得10
4秒前
咸鱼好翻身完成签到,获得积分10
4秒前
NexusExplorer应助科研通管家采纳,获得30
4秒前
北北完成签到 ,获得积分10
4秒前
4秒前
1221211应助科研通管家采纳,获得10
4秒前
4秒前
prosperp应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
剑兰先生应助科研通管家采纳,获得200
4秒前
Judy发布了新的文献求助10
4秒前
Shengwj完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
Ava应助科研通管家采纳,获得10
5秒前
勤奋沛珊应助科研通管家采纳,获得10
5秒前
大模型应助南城雨落采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
kingwill应助科研通管家采纳,获得20
5秒前
李健应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
BreezyGallery完成签到,获得积分10
5秒前
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759