SE-GRU: Structure Embedded Gated Recurrent Unit Neural Networks for Temporal Link Prediction

时间戳 稳健性(进化) 计算机科学 人工神经网络 人工智能 时态数据库 机器学习 数据挖掘 循环神经网络 实时计算 生物化学 化学 基因
作者
Yanting Yin,Yajing Wu,Xuebing Yang,Wensheng Zhang,Xiaojie Yuan
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 2495-2509 被引量:16
标识
DOI:10.1109/tnse.2022.3164659
摘要

Temporal link prediction on dynamic graphs is essential to various areas such as recommendation systems, social networks, and citation analysis, and thus attracts great attention in both research and industry fields. For complex graphs in real-world applications, although recent temporal link prediction methods perform well in predicting high-frequency and nearby connections, it becomes more challenging when considering low-frequency and earlier connections. In this work, we introduce a novel and elegant prediction architecture called Structure Embedded Gated Recurrent Unit (SE-GRU) neural networks, to strengthen the prediction robustness against frequency variation and occurrence delay of connections. The established SE-GRU embeds the structure for local topological characteristics to emphasize the different connection frequencies between nodes and captures the temporal dependencies to avoid losing valuable information caused by long-term changes. We realize neural network optimization considering three terms concerning reconstruction, structure, and evolution. The extensive experiments performed on three public datasets demonstrate the significant superiority of SE-GRU compared with 5 representative and state-of-the-art competitors under three evaluation metrics. The results validate the effectiveness and robustness of our proposed method, by showing that the frequencies and timestamps of connections have a little-to-no negative impact on prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的荷花完成签到,获得积分10
刚刚
元谷雪发布了新的文献求助10
刚刚
哈嘿哈嘿哒完成签到,获得积分10
刚刚
科研汪星人完成签到,获得积分10
刚刚
hugeyoung完成签到,获得积分10
1秒前
张肥肥发布了新的文献求助10
1秒前
Tengami应助鹿鸣鱼跃采纳,获得10
1秒前
1秒前
清新的初夏完成签到,获得积分20
1秒前
今迟小姐完成签到,获得积分10
2秒前
759应助陈c采纳,获得10
3秒前
4秒前
4秒前
4秒前
金皮卡发布了新的文献求助10
4秒前
GuGuGaGaAH发布了新的文献求助10
5秒前
AAA发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
深情冷雪发布了新的文献求助10
5秒前
6秒前
包宇完成签到,获得积分10
6秒前
6秒前
6秒前
降临完成签到,获得积分10
6秒前
Orange应助壮观的可以采纳,获得30
6秒前
君无邪发布了新的文献求助10
7秒前
Owen应助Zeng采纳,获得10
7秒前
Lucas应助xzh采纳,获得10
7秒前
彪壮的金毛完成签到,获得积分10
7秒前
7秒前
酷波er应助单薄枕头采纳,获得10
8秒前
8秒前
舒心乐荷完成签到,获得积分10
9秒前
FashionBoy应助调皮的幻梅采纳,获得10
9秒前
只想摆烂完成签到,获得积分10
9秒前
雨张完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905