SE-GRU: Structure Embedded Gated Recurrent Unit Neural Networks for Temporal Link Prediction

时间戳 稳健性(进化) 计算机科学 人工神经网络 人工智能 时态数据库 机器学习 数据挖掘 循环神经网络 实时计算 生物化学 基因 化学
作者
Yanting Yin,Yajing Wu,Xuebing Yang,Wensheng Zhang,Xiaojie Yuan
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 2495-2509 被引量:16
标识
DOI:10.1109/tnse.2022.3164659
摘要

Temporal link prediction on dynamic graphs is essential to various areas such as recommendation systems, social networks, and citation analysis, and thus attracts great attention in both research and industry fields. For complex graphs in real-world applications, although recent temporal link prediction methods perform well in predicting high-frequency and nearby connections, it becomes more challenging when considering low-frequency and earlier connections. In this work, we introduce a novel and elegant prediction architecture called Structure Embedded Gated Recurrent Unit (SE-GRU) neural networks, to strengthen the prediction robustness against frequency variation and occurrence delay of connections. The established SE-GRU embeds the structure for local topological characteristics to emphasize the different connection frequencies between nodes and captures the temporal dependencies to avoid losing valuable information caused by long-term changes. We realize neural network optimization considering three terms concerning reconstruction, structure, and evolution. The extensive experiments performed on three public datasets demonstrate the significant superiority of SE-GRU compared with 5 representative and state-of-the-art competitors under three evaluation metrics. The results validate the effectiveness and robustness of our proposed method, by showing that the frequencies and timestamps of connections have a little-to-no negative impact on prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李健应助卡列林采纳,获得10
2秒前
拾新发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
小马甲应助如意的听云采纳,获得10
6秒前
iNk应助瞿人雄采纳,获得20
6秒前
7秒前
tzy发布了新的文献求助10
8秒前
星期八发布了新的文献求助10
9秒前
小小红帽发布了新的文献求助10
9秒前
傲娇以晴完成签到 ,获得积分10
10秒前
JamesPei应助xinxin采纳,获得10
10秒前
10秒前
风趣的老太应助bofu采纳,获得10
11秒前
脑洞疼应助魏家乐采纳,获得10
12秒前
天气好好发布了新的文献求助10
12秒前
yep发布了新的文献求助10
13秒前
lanmo完成签到,获得积分10
13秒前
13秒前
14秒前
CipherSage应助拾新采纳,获得10
15秒前
16秒前
wyy完成签到,获得积分10
17秒前
田様应助武雨寒采纳,获得10
17秒前
阿桂完成签到,获得积分10
17秒前
陈可可发布了新的文献求助10
17秒前
ljq发布了新的文献求助80
20秒前
就爱吃土豆完成签到,获得积分0
20秒前
香蕉觅云应助小小橙采纳,获得10
21秒前
量子星尘发布了新的文献求助10
22秒前
TangWL完成签到 ,获得积分10
25秒前
25秒前
久9完成签到 ,获得积分10
26秒前
26秒前
huangyulin66应助羊羊杨采纳,获得10
26秒前
烟花应助澡雪采纳,获得10
27秒前
栀雨味完成签到,获得积分10
28秒前
111完成签到,获得积分20
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975814
求助须知:如何正确求助?哪些是违规求助? 3520123
关于积分的说明 11201020
捐赠科研通 3256502
什么是DOI,文献DOI怎么找? 1798347
邀请新用户注册赠送积分活动 877523
科研通“疑难数据库(出版商)”最低求助积分说明 806417