Breast MRI: Where are we currently standing?

医学 乳房磁振造影 乳房成像 乳腺癌 放射科 磁共振成像 磁共振弥散成像 医学物理学 乳腺摄影术 癌症 内科学
作者
Haralabos Bougias,Nikolaos Stogiannos
出处
期刊:Journal of Medical Imaging and Radiation Sciences [Elsevier BV]
卷期号:53 (2): 203-211 被引量:5
标识
DOI:10.1016/j.jmir.2022.03.072
摘要

Breast cancer is the most frequently occurring malignancy among women, having a great impact on society, economy, and healthcare. It is therefore vital to develop effective imaging methods to perform breast screening, diagnosis, and treatment follow-up. Breast MRI is the most efficient method for screening high-risk patients, for breast lesion differentiation and characterization, and for the assessment of response to treatment. Some novel MRI imaging techniques, such as Diffusion Kurtosis Imaging, perfusion imaging, MR Spectroscopy, hybrid PET/MRI imaging, fMRI and ultra-high field MRI imaging offer the capacity to improve the diagnostic accuracy of breast MRI, while reducing unnecessary biopsies. However, any techniques used in breast MRI should be treated with caution, and after a thoughtful consideration of its main strengths and weaknesses. Fast, unenhanced MRI protocols will benefit our patients, improving their overall MRI experience and avoiding the potential risks of contrast media administration. The implementation of AI-based algorithms, using Deep Learning, Convolutional Neural Networks and Radiomics, will certainly increase the superiority of breast MRI and improve patient outcomes, as they can facilitate lesion differentiation, predict response to treatment, reduce unnecessary biopsies, and also reduce scan times and artefacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研达人采纳,获得10
1秒前
lwl完成签到,获得积分10
2秒前
2秒前
小明同学发布了新的文献求助10
3秒前
6秒前
无限的含蕾完成签到,获得积分10
6秒前
6秒前
6秒前
远_完成签到,获得积分10
7秒前
笗一一完成签到 ,获得积分10
9秒前
9秒前
10秒前
斯文败类应助wade采纳,获得10
10秒前
李火火火发布了新的文献求助30
11秒前
无私秋珊应助yongjie20031121采纳,获得10
12秒前
13秒前
汤冷霜发布了新的文献求助10
14秒前
Asteria发布了新的文献求助20
15秒前
Czz完成签到,获得积分10
16秒前
Mac发布了新的文献求助10
17秒前
西瓜西西西完成签到,获得积分10
18秒前
19秒前
21秒前
21秒前
飞飞鱼完成签到,获得积分10
22秒前
23秒前
友好的涵易发布了新的文献求助200
24秒前
Sky完成签到,获得积分10
24秒前
科目三应助haha采纳,获得10
24秒前
福尔摩云发布了新的文献求助30
26秒前
wade发布了新的文献求助10
26秒前
可乐完成签到,获得积分10
28秒前
babe发布了新的文献求助10
28秒前
ddli发布了新的文献求助10
28秒前
29秒前
exile完成签到,获得积分10
29秒前
星辰大海应助七七八八采纳,获得10
32秒前
科目三应助vivia采纳,获得30
32秒前
畅享未来完成签到,获得积分10
33秒前
Asteria完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994202
求助须知:如何正确求助?哪些是违规求助? 3534683
关于积分的说明 11266214
捐赠科研通 3274605
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724