掺杂剂
碳纤维
氧气
活化能
化学
动力学
兴奋剂
反应速率常数
空位缺陷
无机化学
密度泛函理论
物理化学
分析化学(期刊)
材料科学
结晶学
计算化学
复合材料
有机化学
光电子学
物理
色谱法
复合数
量子力学
作者
Guida Li,Wenxing Yao,Yunlei Zhao,Bo Jin,Jing Xu,Yu Mao,Xiao Luo,Zhiwu Liang
标识
DOI:10.1016/j.ces.2021.117406
摘要
By combining macroscopic kinetic modeling and density functional theory (DFT) calculations, reduction kinetics and carbon formation of Cu-doped Fe-based oxygen carriers are investigated to reveal the role played by Cu. Compared to undoped Fe-Zr oxygen carrier, 1 mol% Cu dopant enhances reduction rate in the first two reactions (Fe2O3 → Fe3O4 (R1) and Fe3O4 → Fe1-xO (R2)) and hinders carbon formation. This is a result of Cu doping reducing the activation energies of R1 and R2 (i.e. R1: 90.6 → 56.5 kJ∙mol−1, R2: 225.9 → 192.2 kJ∙mol−1), and increasing the formation energy of carbon–carbon chain on the surface of reduced material. Grain model indicates that Cu dopant promotes oxygen ion migration in bulk material and improves reduction reaction rate constant in R1 and R2. However, higher activation energy is found for R3 (Fe1-xO → Fe), because the formation of an oxygen vacancy becomes harder as the reduction reaction processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI