Multi-Kernel Relevance Vector Machine With Parameter Optimization for Cycling Aging Prediction of Lithium-Ion Batteries

自行车 相关向量机 相关性(法律) 锂(药物) 核(代数) 计算机科学 离子 温度循环 支持向量机 人工智能 机器学习 材料科学 控制理论(社会学) 数学 热力学 心理学 组合数学 精神科 物理 量子力学 政治学 考古 历史 法学 热的 控制(管理)
作者
Bo Jiang,Haifeng Dai,Xuezhe Wei,Zhao Jiang
出处
期刊:IEEE Journal of Emerging and Selected Topics in Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 175-186 被引量:49
标识
DOI:10.1109/jestpe.2021.3133697
摘要

Aging prediction plays a vital role in battery prognostics and health management, which contributes to preventing unexpected failure and evaluating battery systems' residual value. In this study, a reliable cycling aging prediction based on a data-driven model is proposed to address the urgent issue of adaptive and early prediction of lithium-ion battery remaining useful life (RUL). First, to enhance the learning and generalization abilities of standard relevance vector machines (RVMs), a multi-kernel RVM model containing two kernel functions with different characteristics is constructed, followed by the particle swarm optimization (PSO) algorithm for determining the kernel and weight parameters. Then, a similarity criterion of the battery capacity curves is proposed to screen battery offline data for model training to achieve early life prediction. Battery cycling aging data from two types of batteries under different aging conditions are used for model training and verification. Quantitative experimental results demonstrate that the proposed multi-kernel RVM model can realize the accurate prediction of the failure cycle and capacity attenuation trajectory of different types of batteries. Moreover, the proposed method has also been proved to be able to learn the general fading characteristics from other types of batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小阳发布了新的文献求助10
刚刚
liangyong发布了新的文献求助10
刚刚
淀粉发布了新的文献求助10
1秒前
ED应助hh采纳,获得10
1秒前
dodo完成签到,获得积分0
2秒前
aaaaaa发布了新的文献求助10
2秒前
文章必发发布了新的文献求助10
2秒前
3秒前
CipherSage应助小乐子采纳,获得10
3秒前
852应助DrQin采纳,获得10
4秒前
5秒前
李爱国应助丰富飞阳采纳,获得10
5秒前
东云完成签到,获得积分10
5秒前
6秒前
Owen应助limz采纳,获得10
9秒前
9秒前
鳗鱼蹇完成签到,获得积分10
10秒前
aaaaa完成签到,获得积分10
11秒前
11秒前
明亮访烟完成签到 ,获得积分10
11秒前
fle完成签到,获得积分10
12秒前
陈陈完成签到 ,获得积分10
12秒前
充电宝应助复杂的鸿煊采纳,获得10
12秒前
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
Singularity应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得30
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
15秒前
所所应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得30
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303