Spectral–Spatial Feature Tokenization Transformer for Hyperspectral Image Classification

计算机科学 模式识别(心理学) 人工智能 特征提取 高光谱成像 遥感 全光谱成像 特征(语言学) 像素 计算机视觉 上下文图像分类 图像分割 地质学 图像(数学) 语言学 哲学
作者
Le Sun,Guangrui Zhao,Yuhui Zheng,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:573
标识
DOI:10.1109/tgrs.2022.3144158
摘要

In hyperspectral image (HSI) classification, each pixel sample is assigned to a land-cover category. In the recent past, convolutional neural network (CNN)-based HSI classification methods have greatly improved performance due to their superior ability to represent features. However, these methods have limited ability to obtain deep semantic features, and as the layer's number increases, computational costs rise significantly. The transformer framework can represent high-level semantic features well. In this article, a spectral–spatial feature tokenization transformer (SSFTT) method is proposed to capture spectral–spatial features and high-level semantic features. First, a spectral–spatial feature extraction module is built to extract low-level features. This module is composed of a 3-D convolution layer and a 2-D convolution layer, which are used to extract the shallow spectral and spatial features. Second, a Gaussian weighted feature tokenizer is introduced for features transformation. Third, the transformed features are input into the transformer encoder module for feature representation and learning. Finally, a linear layer is used to identify the first learnable token to obtain the sample label. Using three standard datasets, experimental analysis confirms that the computation time is less than other deep learning methods and the performance of the classification outperforms several current state-of-the-art methods. The code of this work is available at https://github.com/zgr6010/HSI_SSFTT for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
书晴完成签到 ,获得积分10
刚刚
Mark应助科研通管家采纳,获得10
刚刚
轨迹应助科研通管家采纳,获得20
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得50
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
李健应助科研通管家采纳,获得10
1秒前
清醒完成签到,获得积分20
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
2秒前
我要发sci发布了新的文献求助10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
轨迹应助科研通管家采纳,获得20
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得50
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
李明发布了新的文献求助10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784847
求助须知:如何正确求助?哪些是违规求助? 5684004
关于积分的说明 15465575
捐赠科研通 4913804
什么是DOI,文献DOI怎么找? 2644941
邀请新用户注册赠送积分活动 1592845
关于科研通互助平台的介绍 1547234