Spectral–Spatial Feature Tokenization Transformer for Hyperspectral Image Classification

计算机科学 模式识别(心理学) 人工智能 特征提取 高光谱成像 遥感 全光谱成像 特征(语言学) 像素 计算机视觉 上下文图像分类 图像分割 地质学 图像(数学) 语言学 哲学
作者
Le Sun,Guangrui Zhao,Yuhui Zheng,Zebin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:318
标识
DOI:10.1109/tgrs.2022.3144158
摘要

In hyperspectral image (HSI) classification, each pixel sample is assigned to a land-cover category. In the recent past, convolutional neural network (CNN)-based HSI classification methods have greatly improved performance due to their superior ability to represent features. However, these methods have limited ability to obtain deep semantic features, and as the layer's number increases, computational costs rise significantly. The transformer framework can represent high-level semantic features well. In this article, a spectral–spatial feature tokenization transformer (SSFTT) method is proposed to capture spectral–spatial features and high-level semantic features. First, a spectral–spatial feature extraction module is built to extract low-level features. This module is composed of a 3-D convolution layer and a 2-D convolution layer, which are used to extract the shallow spectral and spatial features. Second, a Gaussian weighted feature tokenizer is introduced for features transformation. Third, the transformed features are input into the transformer encoder module for feature representation and learning. Finally, a linear layer is used to identify the first learnable token to obtain the sample label. Using three standard datasets, experimental analysis confirms that the computation time is less than other deep learning methods and the performance of the classification outperforms several current state-of-the-art methods. The code of this work is available at https://github.com/zgr6010/HSI_SSFTT for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘霞完成签到 ,获得积分10
3秒前
漂亮的寄真完成签到,获得积分10
5秒前
雨双发布了新的文献求助10
5秒前
xiaofeiyan发布了新的文献求助10
5秒前
芙蓉完成签到,获得积分10
6秒前
6秒前
WSQ2130发布了新的文献求助10
6秒前
YDX发布了新的文献求助10
6秒前
刘丽梅完成签到 ,获得积分10
7秒前
老温完成签到,获得积分10
7秒前
草木发布了新的文献求助10
8秒前
8秒前
Bear完成签到,获得积分10
9秒前
aaa完成签到,获得积分10
9秒前
Jia发布了新的文献求助20
10秒前
可爱的凛发布了新的文献求助200
11秒前
老10发布了新的文献求助10
12秒前
13秒前
lilywang发布了新的文献求助10
14秒前
Carrie完成签到,获得积分10
16秒前
17秒前
淡淡文轩完成签到,获得积分10
17秒前
时尚语梦完成签到 ,获得积分10
17秒前
18秒前
19秒前
Han发布了新的文献求助30
20秒前
南巷完成签到,获得积分10
21秒前
嘿嘿发布了新的文献求助10
21秒前
蜘蛛道理发布了新的文献求助10
22秒前
天元神尊发布了新的文献求助10
23秒前
拼命十三娘完成签到,获得积分20
23秒前
南巷发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
xixi完成签到,获得积分10
26秒前
科研牛马完成签到,获得积分10
26秒前
心碎的黄焖鸡完成签到 ,获得积分10
27秒前
27秒前
聪慧芷巧发布了新的文献求助10
28秒前
老10完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959531
求助须知:如何正确求助?哪些是违规求助? 3505774
关于积分的说明 11125924
捐赠科研通 3237671
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802902