Current strategies and progress for targeting the “undruggable” transcription factors

计算生物学 转录因子 生物 药物发现 蛋白质-蛋白质相互作用 生物信息学 基因 遗传学
作者
Jingjing Zhuang,Qian Liu,Dalei Wu,Lu Tie
出处
期刊:Acta pharmacologica Sinica [Springer Nature]
卷期号:43 (10): 2474-2481 被引量:7
标识
DOI:10.1038/s41401-021-00852-9
摘要

Transcription factors (TFs) specifically bind to DNA, recruit cofactor proteins and modulate target gene expression, rendering them essential roles in the regulation of numerous biological processes. Meanwhile, mutated or dysregulated TFs are involved in a variety of human diseases. As multiple signaling pathways ultimately converge at TFs, targeting these TFs directly may prove to be more specific and cause fewer side effects, than targeting the upfront conventional targets in these pathways. All these features together endue TFs with great potential and high selectivity as therapeutic drug targets. However, TFs have been historically considered "undruggable", mainly due to their lack of structural information, especially about the appropriate ligand-binding sites and protein-protein interactions, leading to relatively limited choices in the TF-targeting drug design. In this review, we summarize the recent progress of TF-targeting drugs and highlight certain strategies used for targeting TFs, with a number of representative drugs that have been approved or in the clinical trials as examples. Various approaches in targeting TFs directly or indirectly have been developed. Common direct strategies include aiming at defined binding pockets, proteolysis-targeting chimaera (PROTAC), and mutant protein reactivation. In contrast, the indirect ones comprise inhibition of protein-protein interactions between TF and other proteins, blockade of TF expression, targeting the post-translational modifications, and targeting the TF-DNA interactions. With more comprehensive structural information about TFs revealed by the powerful cryo-electron microscopy technology and predicted by machine-learning algorithms, plus more efficient compound screening platforms and a deeper understanding of TF-disease relationships, the development of TF-targeting drugs will certainly be accelerated in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RONG完成签到,获得积分10
1秒前
real季氢完成签到,获得积分10
1秒前
燧人氏发布了新的文献求助10
2秒前
2秒前
需要吗发布了新的文献求助10
2秒前
2秒前
2秒前
累鼠的牛马关注了科研通微信公众号
2秒前
3秒前
llz完成签到,获得积分10
4秒前
5秒前
5秒前
ShellyHan完成签到,获得积分10
6秒前
张可发布了新的文献求助10
6秒前
美丽迎梦发布了新的文献求助10
6秒前
guhuijun发布了新的文献求助10
7秒前
刻苦幻梅完成签到,获得积分10
8秒前
Brightan发布了新的文献求助10
8秒前
充电宝应助yaya采纳,获得10
8秒前
8秒前
9秒前
10秒前
JHJ发布了新的文献求助10
10秒前
11秒前
Jasper应助犹豫的若采纳,获得10
13秒前
13秒前
qyzhu发布了新的文献求助10
14秒前
15秒前
慕青应助很菜的研究生采纳,获得10
15秒前
16秒前
16秒前
领导范儿应助鸭鸭采纳,获得10
18秒前
18秒前
科研通AI5应助叶羽天采纳,获得10
19秒前
19秒前
科目三应助tuluiioo采纳,获得10
19秒前
19秒前
拼搏诗翠发布了新的文献求助10
20秒前
guhuijun完成签到,获得积分10
20秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427