MOF‐Enabled Ion‐Regulating Gel Electrolyte for Long‐Cycling Lithium Metal Batteries Under High Voltage

材料科学 电解质 电化学窗口 电化学 化学工程 气凝胶 离子电导率 锂(药物) 介孔材料 阴极 阳极 热稳定性 纳米技术 电极 化学 有机化学 医学 工程类 内分泌学 物理化学 催化作用
作者
Xuewei Fu,Matthew J. Hurlock,Chenfeng Ding,Xiaoyu Li,Qiang Zhang,Wei‐Hong Zhong
出处
期刊:Small [Wiley]
卷期号:18 (9): e2106225-e2106225 被引量:53
标识
DOI:10.1002/smll.202106225
摘要

Abstract High‐voltage lithium metal batteries (LMBs) are a promising high‐energy‐density energy storage system. However, their practical implementations are impeded by short lifespan due to uncontrolled lithium dendrite growth, narrow electrochemical stability window, and safety concerns of liquid electrolytes. Here, a porous composite aerogel is reported as the gel electrolyte (GE) matrix, made of metal–organic framework (MOF)@bacterial cellulose (BC), to enable long‐life LMBs under high voltage. The effectiveness of suppressing dendrite growth is achieved by regulating ion deposition and facilitating ion conduction. Specifically, two hierarchical mesoporous Zr‐based MOFs with different organic linkers, that is, UiO‐66 and NH 2 ‐UiO‐66, are embedded into BC aerogel skeletons. The results indicate that NH 2 ‐UiO‐66 with anionphilic linkers is more effective in increasing the Li + transference number; the intermolecular interactions between BC and NH 2 ‐UiO‐66 markedly increase the electrochemical stability. The resulting GE shows high ionic conductivity (≈1 mS cm −1 ), high Li + transference number (0.82), wide electrochemical stability window (4.9 V), and excellent thermal stability. Incorporating this GE in a symmetrical Li cell successfully prolongs the cycle life to 1200 h. Paired with the Ni‐rich LiNiCoAlO 2 (Ni: Co: Al = 8.15:1.5:0.35, NCA) cathode, the NH 2 ‐UiO‐66@BC GE significantly improves the capacity, rate performance, and cycle stability, manifesting its feasibility to operate under high voltage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
unaqvq发布了新的文献求助10
刚刚
ding应助paddi采纳,获得10
1秒前
紧张的不悔完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助xiuru采纳,获得10
4秒前
4秒前
xin完成签到,获得积分10
4秒前
在水一方应助小年小少采纳,获得10
4秒前
5秒前
pluto应助成就胡萝卜采纳,获得10
6秒前
6秒前
CipherSage应助潇洒闭月采纳,获得10
6秒前
7秒前
完犊子完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
储物间完成签到,获得积分10
9秒前
9秒前
10秒前
浮浮世世发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助30
11秒前
斯文败类应助unaqvq采纳,获得10
12秒前
12秒前
12秒前
甜蜜鹭洋发布了新的文献求助10
12秒前
12秒前
棠堂发布了新的文献求助10
12秒前
paddi发布了新的文献求助10
12秒前
13秒前
果冻橙完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
童话金发布了新的文献求助10
14秒前
善学以致用应助lllll采纳,获得10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743323
求助须知:如何正确求助?哪些是违规求助? 5413456
关于积分的说明 15347310
捐赠科研通 4884139
什么是DOI,文献DOI怎么找? 2625595
邀请新用户注册赠送积分活动 1574486
关于科研通互助平台的介绍 1531380