Courier routing and assignment for food delivery service using reinforcement learning

强化学习 水准点(测量) 马尔可夫决策过程 计算机科学 任务(项目管理) 运筹学 收入 订单(交换) 增强学习 过程(计算) 服务(商务) 马尔可夫链 布线(电子设计自动化) 人工智能 马尔可夫过程 数学优化 机器学习 工程类 经济 营销 业务 数学 计算机网络 财务 会计 操作系统 统计 系统工程 地理 大地测量学
作者
Aysun Bozanta,Mücahit Çevik,Can Kavaklioğlu,Eray Mert Kavuk,Ayşe Tosun,Sibel B. Sonuç,Alper Duranel,Ayşe Bener
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:164: 107871-107871 被引量:23
标识
DOI:10.1016/j.cie.2021.107871
摘要

We consider a Markov decision process model mimicking a real-world food delivery service where the objective is to maximize the revenue derived from served requests given a limited number of couriers over a period of time. The model incorporates the courier location, order origin, and order destination. Each courier’s task is to pick-up an assigned order and deliver it to the requested destination. We apply three different approaches to solve this problem. In the first approach, we simplify the model to a one courier case and then solve the resulting model using Q-Learning. The resulting policy is used for each courier in the model with more than one courier based on the assumption that all couriers are identical. In the second approach, we use the same logic, however, the underlying one courier model is solved using Double Deep Q-Networks (DDQN). In the third approach, the extensive model is considered where a system state consists of the positions of all couriers and all orders in the system. We use DDQN to solve the extensive model. Policies generated by these approaches are compared against a benchmark rule-based policy. We observe that the resulting policy of training a single courier with Q-learning accumulates higher rewards than the reward collected by the rule-based policy. In addition, DDQN algorithm for a single courier outperforms both the Q-learning and the rule-based approaches, however, DDQN performance is noted to be highly dependent on the hyper-parameters of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Turbo完成签到,获得积分10
刚刚
科研通AI2S应助温暖寻琴采纳,获得10
2秒前
绍兴发布了新的文献求助10
2秒前
3秒前
饱满绝施应助Thi采纳,获得10
5秒前
领导范儿应助m30采纳,获得10
5秒前
FashionBoy应助houbinghua采纳,获得10
5秒前
遂安完成签到,获得积分10
5秒前
赵赵完成签到,获得积分10
6秒前
6秒前
sunlight完成签到,获得积分10
6秒前
7秒前
biodon发布了新的文献求助10
7秒前
8秒前
8秒前
子车茗应助Starry采纳,获得30
9秒前
小鸭子应助Jayzie采纳,获得10
9秒前
love1226完成签到,获得积分10
9秒前
开心就吃猕猴桃完成签到,获得积分10
10秒前
骞骞完成签到 ,获得积分10
10秒前
11秒前
酷波er应助kyt采纳,获得10
11秒前
12秒前
卡卡光波完成签到,获得积分10
12秒前
飞fei完成签到,获得积分20
12秒前
天天快乐应助流光采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
H先生发布了新的文献求助20
14秒前
zbb应助流浪采纳,获得20
14秒前
怡然若雁完成签到,获得积分10
15秒前
ieliz发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
biodon完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311876
求助须知:如何正确求助?哪些是违规求助? 2944696
关于积分的说明 8520681
捐赠科研通 2620293
什么是DOI,文献DOI怎么找? 1432756
科研通“疑难数据库(出版商)”最低求助积分说明 664759
邀请新用户注册赠送积分活动 650064