反硝化
化学
胞外聚合物
铜
核化学
生物膜
流出物
二价
自养
无机化学
氮气
环境工程
细菌
有机化学
生物
工程类
遗传学
作者
Tanghuan Xie,Yanni Xi,Yanfen Liu,Huinian Liu,Zhicheng Su,Yicai Huang,Wenji Xu,Dongbo Wang,Chang Zhang,Xin Li
标识
DOI:10.1016/j.scitotenv.2022.154526
摘要
Divalent copper (Cu(II)) frequently coexists with nitrate (NO3-) in industrial wastewater and the effect of Cu(II) on the autotrophic denitrification system using H2 as the electron donor remains unknown. In this study, the hydrogen-based membrane biofilm reactor (H2-MBfR) was operated continuously over 150 days to explore the effect of Cu(II) on the performance of autotrophic denitrification system and understand the key roles of EPS and microbial community. More than 95% of 20 mg-N/L NO3- was removed at 1-5 mg/L Cu(II), and the removal rate of NO3--N was stabilized to 82% at 10 mg/L Cu(II) after a short period, while NH4+ and NO2- in effluent were hardly detected, indicated that high concentration of Cu(II) did not permanently inhibit the denitrification performance in H2-MBfR. Colorimetric determination showed that Cu(II) stimulated the secretion of EPS, in which the protein (PN) content was much higher than polysaccharide (PS). The PN/PS ratios increased from 0.93 to 1.99, and the PN was more sensitive to copper invasion. The results of three-dimensional excitation-emission matrix illustrated that tryptophan was the main component of EPS chelating Cu(II) to reduce toxicity. The results of Fourier-transform infrared demonstrated that hydroxyl, carboxyl, and protein amide groups bound and reduced Cu(II). Furthermore, Cu(II) was effectively removed (>80%), and the results of distribution and morphology analysis of Cu(II) show that the electron-dense deposits of monovalent copper (Cu(I)) were found in EPS and biofilms and the reduction of Cu(II) to Cu(I) was an obvious self-defense reaction of biofilm to copper stress. The microbial richness and diversity decreased with the long-term exposure to Cu(II), while the relative abundance of denitrifiers Azospira and Dechloromonas increased. This study provides a scientific basis for the optimal design of treatment system for removal of nitrate and recovery of heavy metals simultaneously.
科研通智能强力驱动
Strongly Powered by AbleSci AI