Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks

计算机科学 人工智能 卷积神经网络 情绪分析 集成学习 学习迁移 机器学习 自然语言处理
作者
Alireza Ghorbanali,Mohammad Karim Sohrabi,Farzin Yaghmaee
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (3): 102929-102929 被引量:67
标识
DOI:10.1016/j.ipm.2022.102929
摘要

Huge amounts of multimodal content and comments in a mixture form of text, image, and emoji are continuously shared by users on various social networks. Most of the comments of the users in these networks have emotional aspects, which make the multimodal sentiment analysis (MSA) an important and attractive research topics in this area. In this paper, an ensemble transfer learning method is exploited to propose a hybrid MSA model based on weighted convolutional neural networks. The extended Dempster–Shafer (Yager) theory is also utilized in the proposed method of this paper to fuse the outputs of text and image classifiers to determine the final polarity at the decision level. The pre-trained VGG16 network is firstly used to extract visual features and fine-tune on the MVSA-Multiple and T4SA datasets for image sentiment classification. The Mask-RCNN model is then exploited to determine the objects in the images and convert them to text. The BERT model receives the output of this step along with the textual descriptions of the images for extracting the text features and embedding the words. The output of the BERT model is then imported into a weighted convolutional neural network ensemble (WCNNE). The texts are classified by several weak learners using the AdaBoost that is an ensemble learning technique in which, classifiers are trained sequentially. The combined use of several weak classifiers results in a strong classification. The WCNNE improves the performance and increases the accuracy of the results. As a fusing phase at the decision level, the outputs of the VGG16 and the WCNNE models will be finally merged using the extended Dempster-Shafer theory to obtain the correct sentiment label. The results of the experiments on the MVSA-Multiple and T4SA datasets show that the proposed model is better than the other compared methods and achieved an appropriate accuracy of 0.9348 on MVSA and 0.9689 on the T4SA datasets. Moreover, the proposed model reduces training time due to the use of transfer learning and the proposed AdaBoostCNN achieves better results compared to the single CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵亚南完成签到,获得积分10
刚刚
刚刚
PC完成签到,获得积分10
刚刚
李二牛发布了新的文献求助10
1秒前
l玖完成签到 ,获得积分0
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
钟垠州应助科研通管家采纳,获得10
3秒前
l玖应助科研通管家采纳,获得10
3秒前
3秒前
张张完成签到,获得积分10
3秒前
淳于安筠完成签到,获得积分10
3秒前
MRIFFF完成签到,获得积分10
3秒前
山野村夫应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
小圆应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
l玖应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
寒江雪应助科研通管家采纳,获得150
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
葡萄完成签到,获得积分10
5秒前
中宝完成签到,获得积分10
5秒前
子民完成签到,获得积分10
5秒前
JIU夭发布了新的文献求助10
5秒前
吕布完成签到,获得积分10
6秒前
石淇发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
健壮惋清完成签到 ,获得积分10
6秒前
情怀应助飘逸之玉采纳,获得10
6秒前
6秒前
念之完成签到 ,获得积分10
7秒前
凶狠的食铁兽完成签到,获得积分10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960243
求助须知:如何正确求助?哪些是违规求助? 3506394
关于积分的说明 11129837
捐赠科研通 3238572
什么是DOI,文献DOI怎么找? 1789819
邀请新用户注册赠送积分活动 871927
科研通“疑难数据库(出版商)”最低求助积分说明 803099