已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks

计算机科学 人工智能 卷积神经网络 情绪分析 集成学习 学习迁移 机器学习 自然语言处理
作者
Alireza Ghorbanali,Mohammad Karim Sohrabi,Farzin Yaghmaee
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (3): 102929-102929 被引量:67
标识
DOI:10.1016/j.ipm.2022.102929
摘要

Huge amounts of multimodal content and comments in a mixture form of text, image, and emoji are continuously shared by users on various social networks. Most of the comments of the users in these networks have emotional aspects, which make the multimodal sentiment analysis (MSA) an important and attractive research topics in this area. In this paper, an ensemble transfer learning method is exploited to propose a hybrid MSA model based on weighted convolutional neural networks. The extended Dempster–Shafer (Yager) theory is also utilized in the proposed method of this paper to fuse the outputs of text and image classifiers to determine the final polarity at the decision level. The pre-trained VGG16 network is firstly used to extract visual features and fine-tune on the MVSA-Multiple and T4SA datasets for image sentiment classification. The Mask-RCNN model is then exploited to determine the objects in the images and convert them to text. The BERT model receives the output of this step along with the textual descriptions of the images for extracting the text features and embedding the words. The output of the BERT model is then imported into a weighted convolutional neural network ensemble (WCNNE). The texts are classified by several weak learners using the AdaBoost that is an ensemble learning technique in which, classifiers are trained sequentially. The combined use of several weak classifiers results in a strong classification. The WCNNE improves the performance and increases the accuracy of the results. As a fusing phase at the decision level, the outputs of the VGG16 and the WCNNE models will be finally merged using the extended Dempster-Shafer theory to obtain the correct sentiment label. The results of the experiments on the MVSA-Multiple and T4SA datasets show that the proposed model is better than the other compared methods and achieved an appropriate accuracy of 0.9348 on MVSA and 0.9689 on the T4SA datasets. Moreover, the proposed model reduces training time due to the use of transfer learning and the proposed AdaBoostCNN achieves better results compared to the single CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彬彬发布了新的文献求助10
1秒前
周平平发布了新的文献求助10
1秒前
5秒前
科研通AI6应助无误采纳,获得10
6秒前
6秒前
光亮亦竹完成签到 ,获得积分10
7秒前
8秒前
高是个科研狗完成签到 ,获得积分10
8秒前
天天开心发布了新的文献求助10
8秒前
9秒前
Lanyx完成签到,获得积分10
10秒前
11秒前
12秒前
华仔应助lcj1014采纳,获得10
12秒前
呆梨医生发布了新的文献求助10
13秒前
冷静雨南完成签到 ,获得积分10
14秒前
饱满问凝发布了新的文献求助10
15秒前
lcwait完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
P1US发布了新的文献求助10
17秒前
Ava应助彬彬采纳,获得10
18秒前
19秒前
20秒前
20秒前
好好好完成签到,获得积分10
24秒前
香蕉觅云应助许诺采纳,获得10
24秒前
25秒前
英姑应助科研通管家采纳,获得10
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
lcj1014发布了新的文献求助10
25秒前
26秒前
虚心的绝施完成签到 ,获得积分10
28秒前
28秒前
31秒前
32秒前
32秒前
六芒星发布了新的文献求助10
32秒前
SciGPT应助vinh采纳,获得10
33秒前
wxx发布了新的文献求助30
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934842
求助须知:如何正确求助?哪些是违规求助? 4202497
关于积分的说明 13057826
捐赠科研通 3976988
什么是DOI,文献DOI怎么找? 2179338
邀请新用户注册赠送积分活动 1195492
关于科研通互助平台的介绍 1106860