Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks

计算机科学 人工智能 卷积神经网络 情绪分析 集成学习 学习迁移 机器学习 自然语言处理
作者
Alireza Ghorbanali,Mohammad Karim Sohrabi,Farzin Yaghmaee
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102929-102929 被引量:67
标识
DOI:10.1016/j.ipm.2022.102929
摘要

Huge amounts of multimodal content and comments in a mixture form of text, image, and emoji are continuously shared by users on various social networks. Most of the comments of the users in these networks have emotional aspects, which make the multimodal sentiment analysis (MSA) an important and attractive research topics in this area. In this paper, an ensemble transfer learning method is exploited to propose a hybrid MSA model based on weighted convolutional neural networks. The extended Dempster–Shafer (Yager) theory is also utilized in the proposed method of this paper to fuse the outputs of text and image classifiers to determine the final polarity at the decision level. The pre-trained VGG16 network is firstly used to extract visual features and fine-tune on the MVSA-Multiple and T4SA datasets for image sentiment classification. The Mask-RCNN model is then exploited to determine the objects in the images and convert them to text. The BERT model receives the output of this step along with the textual descriptions of the images for extracting the text features and embedding the words. The output of the BERT model is then imported into a weighted convolutional neural network ensemble (WCNNE). The texts are classified by several weak learners using the AdaBoost that is an ensemble learning technique in which, classifiers are trained sequentially. The combined use of several weak classifiers results in a strong classification. The WCNNE improves the performance and increases the accuracy of the results. As a fusing phase at the decision level, the outputs of the VGG16 and the WCNNE models will be finally merged using the extended Dempster-Shafer theory to obtain the correct sentiment label. The results of the experiments on the MVSA-Multiple and T4SA datasets show that the proposed model is better than the other compared methods and achieved an appropriate accuracy of 0.9348 on MVSA and 0.9689 on the T4SA datasets. Moreover, the proposed model reduces training time due to the use of transfer learning and the proposed AdaBoostCNN achieves better results compared to the single CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鸭翅膀完成签到,获得积分20
刚刚
小李发布了新的文献求助10
刚刚
刚刚
今后应助晚若旧采纳,获得10
1秒前
酷波er应助Lucifer采纳,获得10
1秒前
谦谦发布了新的文献求助30
1秒前
1秒前
杙北完成签到 ,获得积分10
2秒前
飞翔的鱼宝应助T拐拐采纳,获得10
2秒前
ltutui7发布了新的文献求助10
2秒前
乐乐应助KM比比采纳,获得10
2秒前
2秒前
大方师关注了科研通微信公众号
3秒前
3秒前
清清发布了新的文献求助10
3秒前
Lucas应助wise111采纳,获得10
4秒前
秦风关注了科研通微信公众号
4秒前
西蘑菇完成签到,获得积分10
4秒前
小蘑菇应助雪雪啊采纳,获得10
4秒前
hhh发布了新的文献求助10
4秒前
rr发布了新的文献求助10
5秒前
认真乐双发布了新的文献求助10
5秒前
6秒前
6秒前
忧伤的盼秋完成签到,获得积分10
7秒前
7秒前
YeMa发布了新的文献求助10
7秒前
7秒前
8秒前
123完成签到 ,获得积分10
8秒前
LOVE0077完成签到,获得积分10
8秒前
英姑应助cannice采纳,获得10
9秒前
充电宝应助zhs采纳,获得10
9秒前
王博龙完成签到 ,获得积分10
9秒前
9秒前
之贻发布了新的文献求助10
10秒前
www完成签到,获得积分20
10秒前
HJQ发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769