Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks

计算机科学 人工智能 卷积神经网络 情绪分析 集成学习 学习迁移 机器学习 自然语言处理
作者
Alireza Ghorbanali,Mohammad Karim Sohrabi,Farzin Yaghmaee
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102929-102929 被引量:46
标识
DOI:10.1016/j.ipm.2022.102929
摘要

Huge amounts of multimodal content and comments in a mixture form of text, image, and emoji are continuously shared by users on various social networks. Most of the comments of the users in these networks have emotional aspects, which make the multimodal sentiment analysis (MSA) an important and attractive research topics in this area. In this paper, an ensemble transfer learning method is exploited to propose a hybrid MSA model based on weighted convolutional neural networks. The extended Dempster–Shafer (Yager) theory is also utilized in the proposed method of this paper to fuse the outputs of text and image classifiers to determine the final polarity at the decision level. The pre-trained VGG16 network is firstly used to extract visual features and fine-tune on the MVSA-Multiple and T4SA datasets for image sentiment classification. The Mask-RCNN model is then exploited to determine the objects in the images and convert them to text. The BERT model receives the output of this step along with the textual descriptions of the images for extracting the text features and embedding the words. The output of the BERT model is then imported into a weighted convolutional neural network ensemble (WCNNE). The texts are classified by several weak learners using the AdaBoost that is an ensemble learning technique in which, classifiers are trained sequentially. The combined use of several weak classifiers results in a strong classification. The WCNNE improves the performance and increases the accuracy of the results. As a fusing phase at the decision level, the outputs of the VGG16 and the WCNNE models will be finally merged using the extended Dempster-Shafer theory to obtain the correct sentiment label. The results of the experiments on the MVSA-Multiple and T4SA datasets show that the proposed model is better than the other compared methods and achieved an appropriate accuracy of 0.9348 on MVSA and 0.9689 on the T4SA datasets. Moreover, the proposed model reduces training time due to the use of transfer learning and the proposed AdaBoostCNN achieves better results compared to the single CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娜行发布了新的文献求助10
刚刚
大雄完成签到,获得积分10
刚刚
kai发布了新的文献求助10
1秒前
科研通AI5应助老西瓜采纳,获得10
1秒前
核弹完成签到 ,获得积分10
1秒前
kevin完成签到,获得积分10
2秒前
Chem is try发布了新的文献求助10
2秒前
皖医梁朝伟完成签到 ,获得积分10
2秒前
汉堡包应助野性的南蕾采纳,获得10
2秒前
2秒前
便宜小师傅完成签到 ,获得积分10
3秒前
霏冉完成签到,获得积分10
3秒前
4秒前
Grayball应助包容的剑采纳,获得10
4秒前
董小天天完成签到,获得积分10
4秒前
4秒前
华仔应助qym采纳,获得10
4秒前
琅琊为刃完成签到,获得积分10
5秒前
酷波er应助hhh采纳,获得10
5秒前
5秒前
小巧的香氛完成签到 ,获得积分10
6秒前
6秒前
6秒前
zxcv23发布了新的文献求助10
6秒前
没有名称发布了新的文献求助10
6秒前
7秒前
7秒前
zier完成签到 ,获得积分10
8秒前
阡陌完成签到,获得积分10
8秒前
华仔应助毕业就好采纳,获得10
8秒前
liyi发布了新的文献求助10
8秒前
难过小天鹅完成签到,获得积分10
9秒前
非常可爱发布了新的文献求助20
9秒前
eee发布了新的文献求助10
9秒前
幸福胡萝卜完成签到,获得积分10
9秒前
10秒前
科研通AI5应助琅琊为刃采纳,获得10
10秒前
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672