清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks

计算机科学 人工智能 卷积神经网络 情绪分析 集成学习 学习迁移 机器学习 自然语言处理
作者
Alireza Ghorbanali,Mohammad Karim Sohrabi,Farzin Yaghmaee
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102929-102929 被引量:46
标识
DOI:10.1016/j.ipm.2022.102929
摘要

Huge amounts of multimodal content and comments in a mixture form of text, image, and emoji are continuously shared by users on various social networks. Most of the comments of the users in these networks have emotional aspects, which make the multimodal sentiment analysis (MSA) an important and attractive research topics in this area. In this paper, an ensemble transfer learning method is exploited to propose a hybrid MSA model based on weighted convolutional neural networks. The extended Dempster–Shafer (Yager) theory is also utilized in the proposed method of this paper to fuse the outputs of text and image classifiers to determine the final polarity at the decision level. The pre-trained VGG16 network is firstly used to extract visual features and fine-tune on the MVSA-Multiple and T4SA datasets for image sentiment classification. The Mask-RCNN model is then exploited to determine the objects in the images and convert them to text. The BERT model receives the output of this step along with the textual descriptions of the images for extracting the text features and embedding the words. The output of the BERT model is then imported into a weighted convolutional neural network ensemble (WCNNE). The texts are classified by several weak learners using the AdaBoost that is an ensemble learning technique in which, classifiers are trained sequentially. The combined use of several weak classifiers results in a strong classification. The WCNNE improves the performance and increases the accuracy of the results. As a fusing phase at the decision level, the outputs of the VGG16 and the WCNNE models will be finally merged using the extended Dempster-Shafer theory to obtain the correct sentiment label. The results of the experiments on the MVSA-Multiple and T4SA datasets show that the proposed model is better than the other compared methods and achieved an appropriate accuracy of 0.9348 on MVSA and 0.9689 on the T4SA datasets. Moreover, the proposed model reduces training time due to the use of transfer learning and the proposed AdaBoostCNN achieves better results compared to the single CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬去春来完成签到 ,获得积分10
26秒前
田田完成签到 ,获得积分10
39秒前
1分钟前
rachel03发布了新的文献求助10
1分钟前
自然的含蕾完成签到 ,获得积分10
1分钟前
爱静静应助紫熊采纳,获得10
2分钟前
乐乐应助郭星星采纳,获得10
2分钟前
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
2分钟前
郭星星发布了新的文献求助10
2分钟前
o0bubble0o发布了新的文献求助10
2分钟前
元神完成签到 ,获得积分10
2分钟前
3分钟前
就是我发布了新的文献求助10
3分钟前
3分钟前
Lucas应助就是我采纳,获得10
3分钟前
3分钟前
4分钟前
如沐春风发布了新的文献求助10
4分钟前
科研通AI2S应助如沐春风采纳,获得10
4分钟前
bruna完成签到,获得积分10
5分钟前
抹茶肥肠完成签到 ,获得积分10
6分钟前
在阳光下完成签到 ,获得积分10
6分钟前
bruna发布了新的文献求助10
6分钟前
7分钟前
7分钟前
7分钟前
研友_nxw2xL完成签到,获得积分10
7分钟前
muriel完成签到,获得积分10
7分钟前
紫熊发布了新的文献求助10
7分钟前
cy0824完成签到 ,获得积分10
7分钟前
woxinyouyou完成签到,获得积分0
8分钟前
8分钟前
8分钟前
8分钟前
就是我发布了新的文献求助10
9分钟前
liuzhigang完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150617
求助须知:如何正确求助?哪些是违规求助? 2802025
关于积分的说明 7846089
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309235
科研通“疑难数据库(出版商)”最低求助积分说明 628708
版权声明 601757