Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks

计算机科学 人工智能 卷积神经网络 情绪分析 集成学习 学习迁移 机器学习 自然语言处理
作者
Alireza Ghorbanali,Mohammad Karim Sohrabi,Farzin Yaghmaee
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102929-102929 被引量:67
标识
DOI:10.1016/j.ipm.2022.102929
摘要

Huge amounts of multimodal content and comments in a mixture form of text, image, and emoji are continuously shared by users on various social networks. Most of the comments of the users in these networks have emotional aspects, which make the multimodal sentiment analysis (MSA) an important and attractive research topics in this area. In this paper, an ensemble transfer learning method is exploited to propose a hybrid MSA model based on weighted convolutional neural networks. The extended Dempster–Shafer (Yager) theory is also utilized in the proposed method of this paper to fuse the outputs of text and image classifiers to determine the final polarity at the decision level. The pre-trained VGG16 network is firstly used to extract visual features and fine-tune on the MVSA-Multiple and T4SA datasets for image sentiment classification. The Mask-RCNN model is then exploited to determine the objects in the images and convert them to text. The BERT model receives the output of this step along with the textual descriptions of the images for extracting the text features and embedding the words. The output of the BERT model is then imported into a weighted convolutional neural network ensemble (WCNNE). The texts are classified by several weak learners using the AdaBoost that is an ensemble learning technique in which, classifiers are trained sequentially. The combined use of several weak classifiers results in a strong classification. The WCNNE improves the performance and increases the accuracy of the results. As a fusing phase at the decision level, the outputs of the VGG16 and the WCNNE models will be finally merged using the extended Dempster-Shafer theory to obtain the correct sentiment label. The results of the experiments on the MVSA-Multiple and T4SA datasets show that the proposed model is better than the other compared methods and achieved an appropriate accuracy of 0.9348 on MVSA and 0.9689 on the T4SA datasets. Moreover, the proposed model reduces training time due to the use of transfer learning and the proposed AdaBoostCNN achieves better results compared to the single CNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cccc完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
zozox完成签到 ,获得积分10
9秒前
stark完成签到,获得积分10
10秒前
SABUBU完成签到,获得积分10
12秒前
zhuxd完成签到 ,获得积分10
13秒前
YHBBZ完成签到 ,获得积分10
16秒前
浮游应助多恩下采纳,获得10
18秒前
菠萝包完成签到 ,获得积分10
20秒前
wo93872ni完成签到 ,获得积分10
20秒前
轻松的越彬完成签到 ,获得积分10
22秒前
未完成完成签到,获得积分10
25秒前
传统的孤丝完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
30秒前
plz94完成签到 ,获得积分10
42秒前
ABJ完成签到 ,获得积分10
43秒前
Sandy完成签到 ,获得积分10
43秒前
潇洒冰蓝完成签到,获得积分10
47秒前
spring完成签到 ,获得积分10
49秒前
Wsyyy完成签到 ,获得积分10
51秒前
煎饼果子完成签到 ,获得积分10
51秒前
WSY完成签到 ,获得积分10
53秒前
54秒前
小蘑菇应助失眠的小蘑菇采纳,获得10
56秒前
56秒前
量子星尘发布了新的文献求助10
1分钟前
Ai_niyou完成签到,获得积分10
1分钟前
zyb完成签到 ,获得积分10
1分钟前
rsdggsrser完成签到 ,获得积分10
1分钟前
MRJJJJ完成签到,获得积分10
1分钟前
ShishanXue完成签到 ,获得积分10
1分钟前
Ziang_Liu完成签到 ,获得积分10
1分钟前
9527完成签到,获得积分10
1分钟前
科研通AI2S应助殷楷霖采纳,获得10
1分钟前
cq_2完成签到,获得积分0
1分钟前
oscar完成签到,获得积分10
1分钟前
1分钟前
QQWRV完成签到,获得积分10
1分钟前
凌泉完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645043
求助须知:如何正确求助?哪些是违规求助? 4767578
关于积分的说明 15026217
捐赠科研通 4803454
什么是DOI,文献DOI怎么找? 2568317
邀请新用户注册赠送积分活动 1525684
关于科研通互助平台的介绍 1485247