Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks

超参数 计算机科学 稳健性(进化) 人工神经网络 数据挖掘 数据流挖掘 人工智能 滑动窗口协议 网络模型 机器学习 窗口(计算) 生物化学 化学 基因 操作系统
作者
Chengkai Zhang,Xianzhi Song,Yinao Su,Gensheng Li
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:213: 110396-110396 被引量:33
标识
DOI:10.1016/j.petrol.2022.110396
摘要

Data-driven models are widely used to predict rate of penetration. However, there are still challenges on real-time predictions considering influences of formation properties and bit wear. In this paper, a novel data-driven model is proposed to tackle this problem by combining an attention-based Gated Recurrent Unit network and fully connected neural networks. At first, input features of the model are elaborately selected by physical drilling laws and statistical analyzes. Then, four sub-networks are employed to construct the whole model structure, where formation properties are assessed using well-logging data and bit wear is evaluated by introducing an attention-based Gated Recurrent Unit network. Next, the model is dynamically updated with data streams by implementing the sliding window method to realize real-time predictions. Finally, the model performance is thoroughly analyzed based on ten field drilling datasets after optimizing model hyperparameters using the orthogonal experiment method. Results indicate that the model is accurate and robust to give predictions after training with the first several data streams. Compared with the conventional data-driven models, the proposed model shows great superiority due to the sub-network structure, the Gated Recurrent Unit network, and the attention mechanism. The model proposed herein opens opportunities for real-time prediction of rate of penetration in the field with high accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Son4904采纳,获得10
刚刚
天真玉米完成签到,获得积分10
刚刚
yangyang发布了新的文献求助10
1秒前
shendengya完成签到 ,获得积分10
1秒前
1秒前
张铭哲发布了新的文献求助10
2秒前
2秒前
发粪涂墙完成签到,获得积分10
2秒前
小青年儿完成签到 ,获得积分10
3秒前
朝qwer完成签到,获得积分10
3秒前
健忘的灵凡完成签到,获得积分10
3秒前
aa完成签到,获得积分10
3秒前
3秒前
3秒前
宋丽娟完成签到,获得积分10
4秒前
科目三应助小李采纳,获得10
4秒前
斯文败类应助浩然采纳,获得10
4秒前
zec200030完成签到,获得积分10
4秒前
4秒前
5秒前
幽默的溪灵完成签到,获得积分0
5秒前
lhx完成签到,获得积分20
5秒前
蒋宁完成签到,获得积分10
6秒前
大喇叭啦啦啦完成签到,获得积分10
6秒前
6秒前
hzhniubility完成签到,获得积分10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
芳菲依旧应助科研通管家采纳,获得30
7秒前
海聪天宇完成签到,获得积分10
7秒前
7秒前
小鲨鱼完成签到,获得积分10
7秒前
NEUROVASCULAR发布了新的文献求助10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得20
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386