Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks

超参数 计算机科学 稳健性(进化) 人工神经网络 数据挖掘 数据流挖掘 人工智能 滑动窗口协议 网络模型 机器学习 窗口(计算) 生物化学 化学 基因 操作系统
作者
Chengkai Zhang,Xianzhi Song,Yinao Su,Gensheng Li
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:213: 110396-110396 被引量:33
标识
DOI:10.1016/j.petrol.2022.110396
摘要

Data-driven models are widely used to predict rate of penetration. However, there are still challenges on real-time predictions considering influences of formation properties and bit wear. In this paper, a novel data-driven model is proposed to tackle this problem by combining an attention-based Gated Recurrent Unit network and fully connected neural networks. At first, input features of the model are elaborately selected by physical drilling laws and statistical analyzes. Then, four sub-networks are employed to construct the whole model structure, where formation properties are assessed using well-logging data and bit wear is evaluated by introducing an attention-based Gated Recurrent Unit network. Next, the model is dynamically updated with data streams by implementing the sliding window method to realize real-time predictions. Finally, the model performance is thoroughly analyzed based on ten field drilling datasets after optimizing model hyperparameters using the orthogonal experiment method. Results indicate that the model is accurate and robust to give predictions after training with the first several data streams. Compared with the conventional data-driven models, the proposed model shows great superiority due to the sub-network structure, the Gated Recurrent Unit network, and the attention mechanism. The model proposed herein opens opportunities for real-time prediction of rate of penetration in the field with high accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Rubia完成签到 ,获得积分10
3秒前
大西完成签到,获得积分20
4秒前
天天快乐应助luxx采纳,获得10
4秒前
都美秋完成签到 ,获得积分10
5秒前
5秒前
无花果应助Muxiaokun采纳,获得10
5秒前
科研通AI6应助刘奇采纳,获得10
5秒前
7秒前
净心完成签到 ,获得积分10
8秒前
kk完成签到,获得积分10
9秒前
娜娜发布了新的文献求助10
10秒前
小可发布了新的文献求助30
12秒前
江大橘完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
可心儿完成签到,获得积分10
13秒前
14秒前
彭于晏应助眼睛大的碧凡采纳,获得10
15秒前
洛七落完成签到 ,获得积分10
16秒前
18秒前
ghfg发布了新的文献求助10
19秒前
积极以云发布了新的文献求助10
19秒前
Criminology34应助端庄亦巧采纳,获得20
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
op06d完成签到,获得积分10
22秒前
22秒前
璐璐子发布了新的文献求助10
23秒前
24秒前
合适的铃铛完成签到,获得积分10
25秒前
26秒前
邓佳鑫Alan应助我是笨蛋采纳,获得10
27秒前
毛毛洁发布了新的文献求助10
28秒前
zz桓桓完成签到,获得积分20
28秒前
果酱的奥特曼完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
爆米花应助Wang采纳,获得10
31秒前
积极以云完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861