Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks

超参数 计算机科学 稳健性(进化) 人工神经网络 数据挖掘 数据流挖掘 人工智能 滑动窗口协议 网络模型 机器学习 窗口(计算) 生物化学 化学 基因 操作系统
作者
Chengkai Zhang,Xianzhi Song,Yinao Su,Gensheng Li
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:213: 110396-110396 被引量:33
标识
DOI:10.1016/j.petrol.2022.110396
摘要

Data-driven models are widely used to predict rate of penetration. However, there are still challenges on real-time predictions considering influences of formation properties and bit wear. In this paper, a novel data-driven model is proposed to tackle this problem by combining an attention-based Gated Recurrent Unit network and fully connected neural networks. At first, input features of the model are elaborately selected by physical drilling laws and statistical analyzes. Then, four sub-networks are employed to construct the whole model structure, where formation properties are assessed using well-logging data and bit wear is evaluated by introducing an attention-based Gated Recurrent Unit network. Next, the model is dynamically updated with data streams by implementing the sliding window method to realize real-time predictions. Finally, the model performance is thoroughly analyzed based on ten field drilling datasets after optimizing model hyperparameters using the orthogonal experiment method. Results indicate that the model is accurate and robust to give predictions after training with the first several data streams. Compared with the conventional data-driven models, the proposed model shows great superiority due to the sub-network structure, the Gated Recurrent Unit network, and the attention mechanism. The model proposed herein opens opportunities for real-time prediction of rate of penetration in the field with high accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾初安完成签到,获得积分10
1秒前
1秒前
谷粱紫槐发布了新的文献求助10
1秒前
TED应助123采纳,获得10
2秒前
科研通AI6.1应助Vanessa采纳,获得10
3秒前
3秒前
3秒前
顾初安发布了新的文献求助10
4秒前
wanci应助cure采纳,获得10
5秒前
Yingqilin完成签到,获得积分10
5秒前
怡然缘分发布了新的文献求助10
7秒前
领导范儿应助左秋白采纳,获得30
7秒前
自由依秋发布了新的文献求助10
7秒前
憨憨医生发布了新的文献求助10
7秒前
7秒前
丘比特应助顾初安采纳,获得10
8秒前
liuuuuuu完成签到 ,获得积分10
8秒前
打打应助Clifford采纳,获得10
8秒前
JNL完成签到,获得积分10
10秒前
10秒前
10秒前
Redinn完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
nnnn发布了新的文献求助80
12秒前
azerox发布了新的文献求助10
12秒前
Zxxz完成签到,获得积分10
13秒前
结实尔丝完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
酷酷的夜云完成签到,获得积分10
14秒前
桐桐应助尊敬的雨竹采纳,获得10
14秒前
14秒前
15秒前
niuniu完成签到,获得积分10
15秒前
Zxxz发布了新的文献求助10
16秒前
火火火木完成签到 ,获得积分10
16秒前
17秒前
顾矜应助橙子采纳,获得10
18秒前
18秒前
王佳怡完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762368
求助须知:如何正确求助?哪些是违规求助? 5535123
关于积分的说明 15402719
捐赠科研通 4898550
什么是DOI,文献DOI怎么找? 2634907
邀请新用户注册赠送积分活动 1583103
关于科研通互助平台的介绍 1538246