Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks

超参数 计算机科学 稳健性(进化) 人工神经网络 数据挖掘 数据流挖掘 人工智能 滑动窗口协议 网络模型 机器学习 窗口(计算) 生物化学 化学 基因 操作系统
作者
Chengkai Zhang,Xianzhi Song,Yinao Su,Gensheng Li
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:213: 110396-110396 被引量:33
标识
DOI:10.1016/j.petrol.2022.110396
摘要

Data-driven models are widely used to predict rate of penetration. However, there are still challenges on real-time predictions considering influences of formation properties and bit wear. In this paper, a novel data-driven model is proposed to tackle this problem by combining an attention-based Gated Recurrent Unit network and fully connected neural networks. At first, input features of the model are elaborately selected by physical drilling laws and statistical analyzes. Then, four sub-networks are employed to construct the whole model structure, where formation properties are assessed using well-logging data and bit wear is evaluated by introducing an attention-based Gated Recurrent Unit network. Next, the model is dynamically updated with data streams by implementing the sliding window method to realize real-time predictions. Finally, the model performance is thoroughly analyzed based on ten field drilling datasets after optimizing model hyperparameters using the orthogonal experiment method. Results indicate that the model is accurate and robust to give predictions after training with the first several data streams. Compared with the conventional data-driven models, the proposed model shows great superiority due to the sub-network structure, the Gated Recurrent Unit network, and the attention mechanism. The model proposed herein opens opportunities for real-time prediction of rate of penetration in the field with high accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
旦旦旦旦旦旦完成签到,获得积分10
1秒前
BiuBiu怪完成签到,获得积分10
1秒前
1秒前
柠檬西米露完成签到,获得积分10
2秒前
潇湘学术完成签到,获得积分10
2秒前
2秒前
兆吉完成签到 ,获得积分10
2秒前
TiY发布了新的文献求助10
2秒前
2秒前
不安枕头完成签到 ,获得积分10
2秒前
丘比特应助liu1900ab采纳,获得10
2秒前
3秒前
3秒前
ZZY发布了新的文献求助10
3秒前
Evelyn完成签到,获得积分0
3秒前
4秒前
科研小白完成签到,获得积分10
4秒前
善学以致用应助铃铃铛采纳,获得10
4秒前
小Z发布了新的文献求助10
5秒前
WYT发布了新的文献求助10
5秒前
5秒前
科研完成签到,获得积分10
5秒前
韩笑发布了新的文献求助10
5秒前
韩1234发布了新的文献求助10
6秒前
拉长的鼠标完成签到,获得积分20
6秒前
Mrsummer发布了新的文献求助10
6秒前
QYN完成签到,获得积分10
6秒前
黎明发布了新的文献求助10
6秒前
qqq发布了新的文献求助10
7秒前
7秒前
无花果应助xiaomeng采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助燕海雪采纳,获得10
7秒前
cara完成签到,获得积分10
7秒前
王括发布了新的文献求助10
7秒前
烟花应助工作还是工作采纳,获得10
8秒前
8秒前
kysl完成签到 ,获得积分10
9秒前
虚幻诗柳完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006