Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks

超参数 计算机科学 稳健性(进化) 人工神经网络 数据挖掘 数据流挖掘 人工智能 滑动窗口协议 网络模型 机器学习 窗口(计算) 生物化学 化学 基因 操作系统
作者
Chengkai Zhang,Xianzhi Song,Yinao Su,Gensheng Li
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:213: 110396-110396 被引量:33
标识
DOI:10.1016/j.petrol.2022.110396
摘要

Data-driven models are widely used to predict rate of penetration. However, there are still challenges on real-time predictions considering influences of formation properties and bit wear. In this paper, a novel data-driven model is proposed to tackle this problem by combining an attention-based Gated Recurrent Unit network and fully connected neural networks. At first, input features of the model are elaborately selected by physical drilling laws and statistical analyzes. Then, four sub-networks are employed to construct the whole model structure, where formation properties are assessed using well-logging data and bit wear is evaluated by introducing an attention-based Gated Recurrent Unit network. Next, the model is dynamically updated with data streams by implementing the sliding window method to realize real-time predictions. Finally, the model performance is thoroughly analyzed based on ten field drilling datasets after optimizing model hyperparameters using the orthogonal experiment method. Results indicate that the model is accurate and robust to give predictions after training with the first several data streams. Compared with the conventional data-driven models, the proposed model shows great superiority due to the sub-network structure, the Gated Recurrent Unit network, and the attention mechanism. The model proposed herein opens opportunities for real-time prediction of rate of penetration in the field with high accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒梅完成签到,获得积分10
刚刚
刚刚
刚刚
ZZZ发布了新的文献求助10
1秒前
1秒前
2秒前
小柴发布了新的文献求助10
2秒前
2秒前
weiwei04314发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
蓝天应助威武的夜绿采纳,获得30
3秒前
3秒前
咕咕咕完成签到,获得积分10
3秒前
今后应助过柱菜鸟采纳,获得10
3秒前
乐乐应助smm采纳,获得10
3秒前
4秒前
繁荣的千亦完成签到,获得积分10
4秒前
紫色水晶之恋完成签到,获得积分10
4秒前
毛毛虫发布了新的文献求助10
5秒前
5秒前
ding应助乐观的镜子采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
鲤鱼谷秋发布了新的文献求助10
7秒前
帅气善斓完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
丰富的河马完成签到,获得积分10
9秒前
小何发布了新的文献求助10
9秒前
9秒前
可爱的函函应助刘胖胖采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
zzz发布了新的文献求助20
10秒前
肖邦发布了新的文献求助10
11秒前
ff发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106