亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time prediction of rate of penetration by combining attention-based gated recurrent unit network and fully connected neural networks

超参数 计算机科学 稳健性(进化) 人工神经网络 数据挖掘 数据流挖掘 人工智能 滑动窗口协议 网络模型 机器学习 窗口(计算) 生物化学 化学 基因 操作系统
作者
Chengkai Zhang,Xianzhi Song,Yinao Su,Gensheng Li
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:213: 110396-110396 被引量:33
标识
DOI:10.1016/j.petrol.2022.110396
摘要

Data-driven models are widely used to predict rate of penetration. However, there are still challenges on real-time predictions considering influences of formation properties and bit wear. In this paper, a novel data-driven model is proposed to tackle this problem by combining an attention-based Gated Recurrent Unit network and fully connected neural networks. At first, input features of the model are elaborately selected by physical drilling laws and statistical analyzes. Then, four sub-networks are employed to construct the whole model structure, where formation properties are assessed using well-logging data and bit wear is evaluated by introducing an attention-based Gated Recurrent Unit network. Next, the model is dynamically updated with data streams by implementing the sliding window method to realize real-time predictions. Finally, the model performance is thoroughly analyzed based on ten field drilling datasets after optimizing model hyperparameters using the orthogonal experiment method. Results indicate that the model is accurate and robust to give predictions after training with the first several data streams. Compared with the conventional data-driven models, the proposed model shows great superiority due to the sub-network structure, the Gated Recurrent Unit network, and the attention mechanism. The model proposed herein opens opportunities for real-time prediction of rate of penetration in the field with high accuracy and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自律发布了新的文献求助10
1秒前
脑洞疼应助wzy采纳,获得10
10秒前
比格大王应助clearlove采纳,获得10
13秒前
16秒前
wzy发布了新的文献求助10
22秒前
悟空爱吃酥橙完成签到,获得积分10
29秒前
33秒前
自律完成签到,获得积分10
47秒前
ma121完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
刺1656发布了新的文献求助10
1分钟前
1分钟前
jiangmi完成签到,获得积分10
2分钟前
Sene完成签到,获得积分10
2分钟前
andrele应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
感动初蓝完成签到 ,获得积分10
3分钟前
橘橘橘子皮完成签到 ,获得积分10
3分钟前
3分钟前
蒙恩Maria发布了新的文献求助10
3分钟前
4分钟前
蒙恩Maria完成签到,获得积分10
4分钟前
Pattis完成签到 ,获得积分10
4分钟前
鲸鱼完成签到 ,获得积分10
4分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
moaner完成签到,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
优秀的甜菜完成签到,获得积分10
6分钟前
zznzn发布了新的文献求助10
6分钟前
Hello应助zznzn采纳,获得10
6分钟前
橘笙发布了新的文献求助10
6分钟前
Ricardo完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671215
求助须知:如何正确求助?哪些是违规求助? 4912385
关于积分的说明 15134222
捐赠科研通 4829985
什么是DOI,文献DOI怎么找? 2586585
邀请新用户注册赠送积分活动 1540226
关于科研通互助平台的介绍 1498443