Investigation of menopause-induced changes on hair by Raman spectroscopy and chemometrics

更年期 化学计量学 线性判别分析 主成分分析 拉曼光谱 模式识别(心理学) 化学 数学 统计 计算机科学 内科学 人工智能 色谱法 医学 光学 物理
作者
Anna Luiza Bizerra de Brito,Carlotta Brüggen,Gülce Öğrüç Ildız,Rui Fausto
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:275: 121175-121175 被引量:2
标识
DOI:10.1016/j.saa.2022.121175
摘要

The ending of estrogen production in the ovaries after menopause results in a series of important physiologic changes, including hair texture and growth. In this study we demonstrate that Raman spectroscopy can be used successfully as a tool to probe menopause-induced changes on hair, in particular when coupled with suitable chemometrics approaches. The detailed analysis of the average Raman spectra (in particular of the Amide I and νS-S stretching spectral regions) of the hair samples of women pre- and post-menopause allowed to estimate that absence of estrogen in post-menopause women leads to an average reduction of ∼12% in the thickness of the hair cuticle, compared to that of pre-menopause women, and revealed the strong prevalence of disulphide bonds in the most stable gauche-gauche-gauche conformation in the hair cuticle. From the analysis of the νS-S stretching spectral region it could also be concluded that the amount of α-helix keratin is slightly higher for post-menopause than for pre-menopause women. A series of statistical models were developed in order to classify the hair samples. Outperforming the traditional PCA-LDA (principal component analysis - linear discriminant analysis) approach, in the present study a GA-LDA (genetic algorithm - linear discriminant analysis) strategy was used for variable reduction/selection and samples' classification. This strategy allowed to develop of a statistical model (L16), which has exceptional prediction capability (total accuracy of 96.6%, with excellent sensitivity and selectivity) and can be used as an efficient instrument for the hair samples' classification. In addition, a new chemometrics approach is here presented, which allows to overcome the intrinsic limitations of the GA algorithm and that can be used to develop statistical models that use GA as the variable reduction/selection method, but superseding its stochastic nature. Three suitable models for classification of the hair samples according to the menopause status of the women were developed using this novel approach (LV17, BLV20 and PLS7 models), which are based on the Fisher's and Bayers' LDA approaches and the PLS-DA method. The followed new chemometrics approach uses the results of a large set of GA-LDA runs over the full data matrix for the selection of the reduced data matrices. The criterion for the selection of the variables is their statistical significance in terms of number of occurrences as solutions of the whole set of GA-LDA runs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
buuyoo完成签到,获得积分10
1秒前
科研通AI5应助魏煜佳采纳,获得10
1秒前
LLxiaolong完成签到,获得积分10
1秒前
2秒前
2秒前
巨噬细胞A完成签到,获得积分10
2秒前
2秒前
我要读博士完成签到 ,获得积分10
2秒前
xxq完成签到,获得积分20
2秒前
福气小姐完成签到 ,获得积分10
2秒前
搜集达人应助jjy采纳,获得10
3秒前
3秒前
郑总完成签到,获得积分10
3秒前
CipherSage应助马尼拉采纳,获得10
3秒前
SCI完成签到 ,获得积分10
4秒前
5秒前
healer发布了新的文献求助10
5秒前
123完成签到,获得积分20
6秒前
李健的小迷弟应助yili采纳,获得10
6秒前
L.完成签到,获得积分10
6秒前
木子发布了新的文献求助10
6秒前
威武诺言发布了新的文献求助10
6秒前
科研通AI5应助孙二二采纳,获得10
6秒前
6秒前
英姑应助rookie_b0采纳,获得10
7秒前
毛慢慢发布了新的文献求助10
7秒前
123完成签到,获得积分10
7秒前
kangkang完成签到,获得积分10
8秒前
丘比特应助东风第一枝采纳,获得10
8秒前
8秒前
丰知然应助normankasimodo采纳,获得10
9秒前
黑森林发布了新的文献求助30
9秒前
hu970发布了新的文献求助10
9秒前
9秒前
俭朴夜雪发布了新的文献求助30
9秒前
林上草应助lzj001983采纳,获得10
9秒前
小白完成签到,获得积分20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759