Investigation of menopause-induced changes on hair by Raman spectroscopy and chemometrics

更年期 化学计量学 线性判别分析 主成分分析 拉曼光谱 模式识别(心理学) 化学 数学 统计 计算机科学 内科学 人工智能 色谱法 医学 光学 物理
作者
Anna Luiza Bizerra de Brito,Carlotta Brüggen,Gülce Öğrüç Ildız,Rui Fausto
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:275: 121175-121175 被引量:2
标识
DOI:10.1016/j.saa.2022.121175
摘要

The ending of estrogen production in the ovaries after menopause results in a series of important physiologic changes, including hair texture and growth. In this study we demonstrate that Raman spectroscopy can be used successfully as a tool to probe menopause-induced changes on hair, in particular when coupled with suitable chemometrics approaches. The detailed analysis of the average Raman spectra (in particular of the Amide I and νS-S stretching spectral regions) of the hair samples of women pre- and post-menopause allowed to estimate that absence of estrogen in post-menopause women leads to an average reduction of ∼12% in the thickness of the hair cuticle, compared to that of pre-menopause women, and revealed the strong prevalence of disulphide bonds in the most stable gauche-gauche-gauche conformation in the hair cuticle. From the analysis of the νS-S stretching spectral region it could also be concluded that the amount of α-helix keratin is slightly higher for post-menopause than for pre-menopause women. A series of statistical models were developed in order to classify the hair samples. Outperforming the traditional PCA-LDA (principal component analysis - linear discriminant analysis) approach, in the present study a GA-LDA (genetic algorithm - linear discriminant analysis) strategy was used for variable reduction/selection and samples' classification. This strategy allowed to develop of a statistical model (L16), which has exceptional prediction capability (total accuracy of 96.6%, with excellent sensitivity and selectivity) and can be used as an efficient instrument for the hair samples' classification. In addition, a new chemometrics approach is here presented, which allows to overcome the intrinsic limitations of the GA algorithm and that can be used to develop statistical models that use GA as the variable reduction/selection method, but superseding its stochastic nature. Three suitable models for classification of the hair samples according to the menopause status of the women were developed using this novel approach (LV17, BLV20 and PLS7 models), which are based on the Fisher's and Bayers' LDA approaches and the PLS-DA method. The followed new chemometrics approach uses the results of a large set of GA-LDA runs over the full data matrix for the selection of the reduced data matrices. The criterion for the selection of the variables is their statistical significance in terms of number of occurrences as solutions of the whole set of GA-LDA runs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助annaanna采纳,获得10
刚刚
于广喜发布了新的文献求助10
刚刚
陈博儿发布了新的文献求助10
1秒前
1秒前
慕青应助无敌幸运儿采纳,获得10
1秒前
明亮的泥猴桃完成签到,获得积分10
1秒前
2秒前
2秒前
罗小罗完成签到 ,获得积分10
5秒前
咕咕完成签到,获得积分10
5秒前
Fyyyyyyyyyz发布了新的文献求助10
5秒前
6秒前
风之旅人完成签到,获得积分10
6秒前
孟严青完成签到,获得积分10
6秒前
yidemeihaoshijie完成签到 ,获得积分10
6秒前
Peng发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
顾矜应助flywee采纳,获得10
7秒前
wdq完成签到 ,获得积分10
8秒前
大模型应助LZY采纳,获得10
8秒前
熊熊面包应助以恒之心采纳,获得10
8秒前
9秒前
9秒前
meng完成签到,获得积分10
9秒前
隐形曼青应助Marita采纳,获得10
9秒前
lango完成签到 ,获得积分10
10秒前
wshwx发布了新的文献求助10
11秒前
陈12完成签到 ,获得积分10
11秒前
11秒前
11秒前
float完成签到 ,获得积分10
11秒前
12秒前
森森完成签到,获得积分10
12秒前
席楠发布了新的文献求助30
12秒前
qmou发布了新的文献求助10
12秒前
曾经的亦绿完成签到 ,获得积分10
12秒前
毛毛完成签到,获得积分10
12秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122411
求助须知:如何正确求助?哪些是违规求助? 2772885
关于积分的说明 7714973
捐赠科研通 2428396
什么是DOI,文献DOI怎么找? 1289747
科研通“疑难数据库(出版商)”最低求助积分说明 621504
版权声明 600183