RPI-MDLStack: Predicting RNA–protein interactions through deep learning with stacking strategy and LASSO

人工智能 计算机科学 支持向量机 机器学习 随机森林 判别式 多层感知器 Lasso(编程语言) 特征选择 人工神经网络 堆积 分类器(UML) 模式识别(心理学) 化学 有机化学 万维网
作者
Bin Yu,Xue Wang,Yaqun Zhang,Hongli Gao,Yifei Wang,Yushuang Liu,Xin Gao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:120: 108676-108676 被引量:25
标识
DOI:10.1016/j.asoc.2022.108676
摘要

RNA–protein interactions (RPI) play a crucial role in foundational cellular physiological processes. Traditional methods to predict RPI are implemented through expensive and labor-intensive biological experiments, and existing computational methods are far from being satisfactory. There is a timely need for developing more cost-effective methods to predict RPI. A stacking ensemble deep learning-based framework (named RPI-MDLStack) is constructed for RPI prediction in this study. First, sequential-, physicochemical-, structural- and evolutionary-information from RNA and protein sequences are obtained through eight feature extraction methods. Then, the optimal feature is generated after eliminating the redundancy of the fusion features by the least absolute shrinkage and selection operator (LASSO). Based on the stacking strategy, the optimal feature is first learned by the base-classifier combination composed of multilayer perceptron (MLP), support vector machine (SVM), random forest (RF), gated recurrent unit (GRU), and deep neural networks (DNN). Finally, the prediction scores are fed into a discriminative model for further training. The results of 5-fold cross-validation test prove the superior identification of RPI-MDLStack with accuracy of 96.7%, 87.3%, 94.6%, 97.1% and 89.5% on RPI488, RPI369, RPI2241, RPI1807, and RPI1446, respectively. Additionally, RPI-MDLStack obtained the overall prediction accuracy of 97.8% in the independent tests trained on RPI488. Compared with other state-of-the-art RPI prediction methods using the same datasets, RPI-MDLStack shows more robust and stable for predicting RPI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢珠完成签到,获得积分10
1秒前
1秒前
杜杜完成签到,获得积分10
1秒前
在水一方应助慕航采纳,获得10
3秒前
诗情画奕关注了科研通微信公众号
3秒前
3秒前
zigzagya发布了新的文献求助10
4秒前
倪吉旭完成签到,获得积分10
4秒前
背后连虎完成签到,获得积分10
5秒前
wulianlian完成签到,获得积分10
5秒前
zzzz发布了新的文献求助10
5秒前
这个发布了新的文献求助30
6秒前
6秒前
6秒前
斯文谷秋发布了新的文献求助30
7秒前
戈多完成签到,获得积分10
9秒前
9秒前
lc完成签到,获得积分10
10秒前
乐乐应助友00000采纳,获得10
10秒前
ding应助子璇采纳,获得10
12秒前
12秒前
wulianlian发布了新的文献求助10
12秒前
12秒前
12秒前
kai完成签到,获得积分10
13秒前
慕航完成签到,获得积分10
14秒前
14秒前
竹筏过海应助Joshua采纳,获得10
15秒前
嚯嚯很有才发布了新的文献求助100
15秒前
直率的醉冬关注了科研通微信公众号
16秒前
16秒前
科研通AI2S应助qingqing采纳,获得10
16秒前
优雅冷风发布了新的文献求助10
17秒前
17秒前
慕航发布了新的文献求助10
18秒前
lnpuzgz发布了新的文献求助10
18秒前
18秒前
朱大帅完成签到,获得积分10
19秒前
耍酷的翠曼完成签到,获得积分10
19秒前
比奇堡完成签到,获得积分10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232433
求助须知:如何正确求助?哪些是违规求助? 2879364
关于积分的说明 8210667
捐赠科研通 2546680
什么是DOI,文献DOI怎么找? 1376287
科研通“疑难数据库(出版商)”最低求助积分说明 647594
邀请新用户注册赠送积分活动 622856