MRI radiomics: A machine learning approach for the risk stratification of endometrial cancer patients

医学 特征选择 概化理论 人工智能 支持向量机 无线电技术 机器学习 成对比较 交叉验证 特征(语言学) 模式识别(心理学) 计算机科学 放射科 统计 数学 语言学 哲学
作者
Pier Paolo Mainenti,Arnaldo Stanzione,Renato Cuocolo,Renata Del Grosso,Roberta Danzi,Valeria Romeo,Antonio Raffone,Attilio Di Spiezio Sardo,Elena Giordano,Antonio Travaglino,Luigi Insabato,Mariano Scaglione,Simone Maurea,Arturo Brunetti
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:149: 110226-110226 被引量:31
标识
DOI:10.1016/j.ejrad.2022.110226
摘要

To investigate radiomics and machine learning (ML) as possible tools to enhance MRI-based risk stratification in patients with endometrial cancer (EC).From two institutions, 133 patients (Institution1 = 104 and Institution2 = 29) with EC and pre-operative MRI were retrospectively enrolled and divided in two a low-risk and a high-risk group according to EC stage and grade. T2-weighted (T2w) images were three-dimensionally annotated to obtain volumes of interest of the entire tumor. A PyRadiomics based and previously validated pipeline was used to extract radiomics features and perform feature selection. In particular, feature stability, variance and pairwise correlation were analyzed. Then, the least absolute shrinkage and selection operator technique and recursive feature elimination were used to obtain the final feature set. The performance of a Support Vector Machine (SVM) algorithm was assessed on the dataset from Institution 1 via 2-fold cross-validation. Then, the model was trained on the entire Institution 1 dataset and tested on the external test set from Institution 2.In total, 1197 radiomics features were extracted. After the exclusion of unstable, low variance and intercorrelated features least absolute shrinkage and selection operator and recursive feature elimination identified 4 features that were used to build the predictive ML model. It obtained an accuracy of 0.71 and 0.72 in the train and test sets respectively.Whole-lesion T2w-derived radiomics showed encouraging results and good generalizability for the identification of low-risk EC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Drwang完成签到,获得积分10
刚刚
1秒前
七七完成签到,获得积分10
3秒前
老狗子完成签到 ,获得积分10
4秒前
zjj完成签到,获得积分10
5秒前
Gengen完成签到,获得积分10
7秒前
9秒前
霜石完成签到,获得积分10
9秒前
XRWei完成签到 ,获得积分10
10秒前
11秒前
搜集达人应助linkoop采纳,获得10
11秒前
李健的小迷弟应助在写了采纳,获得10
12秒前
雏菊完成签到,获得积分10
12秒前
沐秋完成签到,获得积分10
15秒前
YQ57发布了新的文献求助30
15秒前
论文顺利发布了新的文献求助10
16秒前
16秒前
赘婿应助小草采纳,获得10
16秒前
18秒前
情怀应助科研通管家采纳,获得10
19秒前
ED应助科研通管家采纳,获得10
20秒前
qsw完成签到,获得积分10
20秒前
20秒前
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
20秒前
orixero应助科研通管家采纳,获得10
20秒前
20秒前
Akim应助科研通管家采纳,获得10
20秒前
彭于彦祖应助科研通管家采纳,获得30
20秒前
WWshu应助科研通管家采纳,获得10
20秒前
努努力发布了新的文献求助10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
赘婿应助科研通管家采纳,获得10
21秒前
黄紫红蓝应助科研通管家采纳,获得10
21秒前
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432