已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The prediction power of machine learning on estimating the sepsis mortality in the intensive care unit

SAPS II型 重症监护室 阿帕奇II 败血症 医学 接收机工作特性 机器学习 重症监护 人工智能 随机森林 统计 感知器 多层感知器 计算机科学 重症监护医学 数学 内科学 人工神经网络
作者
Selcuk Mehtap,Oguz Koc,A. Sevtap Selcuk‐Kestel
出处
期刊:Informatics in Medicine Unlocked [Elsevier]
卷期号:28: 100861-100861 被引量:9
标识
DOI:10.1016/j.imu.2022.100861
摘要

The prediction of sepsis mortality of intensive care unit (ICU) observations using machine learning (ML) methods is hypothesized to yield better or as good as performance compared to the prognostic scores. This paper aims to show that the accuracy of ML in sepsis mortality estimation can be superior and supportive knowledge to SAPS II, APACHE II, and SOFA (traditional) scores even under small sample restrictions. The retrospective collection of data from the patients (n = 200) admitted to ICU of Acibadem Hospital, Istanbul-Turkey, between 2015 and 2020 is utilized to detect the sepsis mortality risk using eight ML methods and a generated ensemble model along with the traditional prognostic scores. The mortality as a decisive indicator is evaluated according to the explanatory variables included quantifying the traditional scores. In the calibration of the data, five different predetermined splits of the random samples are used for the training and the validation of the ML methods. The efficiency of the prediction results of ML methods and the traditional scoring methods are investigated by AUC-ROC curves and other accuracy indicators. Consecutive processes of Box-Cox and Min-Max transformations on data and parameter optimization are performed to increase the efficiency of algorithms. The accuracy in the mortality prediction is achieved the best by the Multi-Layer Perceptron algorithm compared to SAPS II and APACHE II methods and is as good as the one with what SOFA predicts. The prediction power of the best performing ML methods for APACHE II, SAPS II, and SOFA are found to be 84.45%, 85.25% and 73.47%, respectively. The ensemble of eight ML methods is found to increase the performance around 2% in APACHE II score. The outcomes of this study have clinical merits in evaluating the potential use of ML methods in predicting ICU mortality superior to traditional scores APACHE II, SAPS II, and as good as SOFA. Additionally, it explores which of the variables contributing to sepsis mortality risk should be taken as apriori information in treating the patients and requires fewer number of explanatory variables, with reliable prediction powers even for considerably small sample size data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小朋友发布了新的文献求助10
刚刚
1秒前
岩新完成签到 ,获得积分10
1秒前
原野小年发布了新的文献求助20
3秒前
3秒前
畅快忆安完成签到,获得积分10
3秒前
5秒前
cc完成签到,获得积分10
5秒前
安然发布了新的文献求助10
6秒前
畅快忆安发布了新的文献求助10
7秒前
赵银志完成签到 ,获得积分10
7秒前
8秒前
8秒前
cc发布了新的文献求助10
10秒前
天真的半莲完成签到,获得积分10
10秒前
11秒前
苦砂糖完成签到,获得积分10
11秒前
默默念文发布了新的文献求助10
14秒前
毛毛虫完成签到,获得积分10
14秒前
dryao发布了新的文献求助30
14秒前
TaoJ发布了新的文献求助10
14秒前
15秒前
SciGPT应助杨文磊采纳,获得10
18秒前
桐桐应助YWL采纳,获得10
18秒前
Wilson完成签到 ,获得积分10
18秒前
18秒前
wybbbb完成签到,获得积分20
20秒前
Schroenius发布了新的文献求助10
20秒前
20秒前
安然发布了新的文献求助10
21秒前
23秒前
学术菜鸡123完成签到,获得积分10
24秒前
kk发布了新的文献求助10
25秒前
28秒前
小朋友完成签到,获得积分10
31秒前
33秒前
请叫我风吹麦浪应助Gu采纳,获得10
33秒前
小包子发布了新的文献求助10
33秒前
天天快乐应助Talha采纳,获得10
34秒前
今后应助Talha采纳,获得10
34秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484124
求助须知:如何正确求助?哪些是违规求助? 3073192
关于积分的说明 9130024
捐赠科研通 2764876
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701058