亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The prediction power of machine learning on estimating the sepsis mortality in the intensive care unit

SAPS II型 重症监护室 阿帕奇II 败血症 医学 接收机工作特性 机器学习 重症监护 人工智能 随机森林 统计 感知器 多层感知器 计算机科学 重症监护医学 数学 内科学 人工神经网络
作者
Selcuk Mehtap,Oguz Koc,A. Sevtap Selcuk‐Kestel
出处
期刊:Informatics in Medicine Unlocked [Elsevier]
卷期号:28: 100861-100861 被引量:15
标识
DOI:10.1016/j.imu.2022.100861
摘要

The prediction of sepsis mortality of intensive care unit (ICU) observations using machine learning (ML) methods is hypothesized to yield better or as good as performance compared to the prognostic scores. This paper aims to show that the accuracy of ML in sepsis mortality estimation can be superior and supportive knowledge to SAPS II, APACHE II, and SOFA (traditional) scores even under small sample restrictions. The retrospective collection of data from the patients (n = 200) admitted to ICU of Acibadem Hospital, Istanbul-Turkey, between 2015 and 2020 is utilized to detect the sepsis mortality risk using eight ML methods and a generated ensemble model along with the traditional prognostic scores. The mortality as a decisive indicator is evaluated according to the explanatory variables included quantifying the traditional scores. In the calibration of the data, five different predetermined splits of the random samples are used for the training and the validation of the ML methods. The efficiency of the prediction results of ML methods and the traditional scoring methods are investigated by AUC-ROC curves and other accuracy indicators. Consecutive processes of Box-Cox and Min-Max transformations on data and parameter optimization are performed to increase the efficiency of algorithms. The accuracy in the mortality prediction is achieved the best by the Multi-Layer Perceptron algorithm compared to SAPS II and APACHE II methods and is as good as the one with what SOFA predicts. The prediction power of the best performing ML methods for APACHE II, SAPS II, and SOFA are found to be 84.45%, 85.25% and 73.47%, respectively. The ensemble of eight ML methods is found to increase the performance around 2% in APACHE II score. The outcomes of this study have clinical merits in evaluating the potential use of ML methods in predicting ICU mortality superior to traditional scores APACHE II, SAPS II, and as good as SOFA. Additionally, it explores which of the variables contributing to sepsis mortality risk should be taken as apriori information in treating the patients and requires fewer number of explanatory variables, with reliable prediction powers even for considerably small sample size data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
丘比特应助科研通管家采纳,获得30
3秒前
把狗摆反应助科研通管家采纳,获得30
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
juan完成签到 ,获得积分10
4秒前
fanxilin发布了新的文献求助10
8秒前
科目三应助佳佳泥尼采纳,获得10
15秒前
15秒前
15秒前
17秒前
Nick_YFWS完成签到,获得积分10
18秒前
S1mon发布了新的文献求助10
21秒前
许三问完成签到 ,获得积分0
22秒前
22秒前
YQP发布了新的文献求助10
23秒前
科研通AI6.2应助怡然的鱼采纳,获得10
23秒前
27秒前
32秒前
36秒前
zyjsunye完成签到 ,获得积分10
37秒前
chanel发布了新的文献求助10
38秒前
呐呐呐呐呐呐完成签到,获得积分10
42秒前
43秒前
43秒前
传奇3应助S1mon采纳,获得10
44秒前
YsGao发布了新的文献求助10
47秒前
刘十萌发布了新的文献求助10
49秒前
1分钟前
1分钟前
lll发布了新的文献求助10
1分钟前
czyzyzy发布了新的文献求助10
1分钟前
碧蓝皮卡丘完成签到,获得积分10
1分钟前
Notch信号完成签到,获得积分10
1分钟前
lll完成签到 ,获得积分10
1分钟前
醒了没醒醒完成签到 ,获得积分10
1分钟前
1分钟前
车访枫发布了新的文献求助10
1分钟前
czyzyzy完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880388
求助须知:如何正确求助?哪些是违规求助? 6571329
关于积分的说明 15689650
捐赠科研通 5000037
什么是DOI,文献DOI怎么找? 2694156
邀请新用户注册赠送积分活动 1635983
关于科研通互助平台的介绍 1593410