An automated steel plates fault diagnosis system using adaptive faster region convolutional neural network

卷积神经网络 计算机科学 过程(计算) 人工神经网络 断层(地质) 人工智能 鉴定(生物学) 方案(数学) 模式识别(心理学) 数学 地质学 数学分析 植物 地震学 生物 操作系统
作者
V. Elanangai,K. Vasanth
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:43 (6): 7067-7079 被引量:2
标识
DOI:10.3233/jifs-213031
摘要

In today’s world, Steel plates play essential materials for various industries like the national defense industry, chemical industry, automobile industry, machinery manufacturing, etc. However, some defects may occur in a few plates during the manufacture of stainless-steel plates which directly impact the quality of the stainless-steel plate. If the faulted plate detection can be done manually, then it leads to errors and a time-consuming process. Hence, a computerized automated system is necessary to detect the abnormalities. In this paper, a novel Adaptive Faster Region Convolutional Neural Networks (AFRCNN) scheme has been proposed for automatic fault detection of stainless-steel plates. The proposed AFRCNN scheme comprises three phases: identification, detection, and recognition. Primarily, the damaged plates are identified using Region Proposal Network and Fully Convolutional Neural Network functioning as a combined process under AFRCNN. In the next phase, the number corresponding to the particular plate is recognized through the standard Automated Plate Number Recognition approach with the support of the character recognition technique. The simulation results manifest that the proposed AFRCNN scheme obtains a superior classification accuracy of 99.36%, specificity of 99.24%, and F1-score of 98.18% as compared with the existing state-of-the-art schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助岩追研采纳,获得10
刚刚
1秒前
1秒前
1秒前
zjq发布了新的文献求助10
1秒前
房明锴发布了新的文献求助10
2秒前
2秒前
znsmaqwdy发布了新的文献求助10
2秒前
情怀应助MH采纳,获得10
2秒前
虚心元绿完成签到,获得积分10
3秒前
3秒前
save发布了新的文献求助10
3秒前
Wang发布了新的文献求助200
3秒前
西木完成签到,获得积分10
3秒前
清爽朋友发布了新的文献求助30
3秒前
3秒前
4秒前
4秒前
狂野绿竹完成签到,获得积分10
5秒前
11完成签到,获得积分10
5秒前
5秒前
hoongyan完成签到 ,获得积分10
7秒前
7秒前
侯笑笑发布了新的文献求助30
7秒前
孙行行完成签到,获得积分10
8秒前
洁净山灵完成签到,获得积分10
8秒前
科研通AI6应助hersy采纳,获得10
8秒前
可积完成签到,获得积分10
8秒前
8秒前
9秒前
znsmaqwdy完成签到,获得积分10
9秒前
Owen应助zsy采纳,获得10
10秒前
10秒前
田様应助端庄书雁采纳,获得10
10秒前
甜蜜不悔完成签到,获得积分10
10秒前
11秒前
顾矜应助西木采纳,获得10
11秒前
我是老大应助save采纳,获得10
11秒前
冷傲的人雄完成签到,获得积分10
11秒前
华仔应助YY采纳,获得10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709