Early detection of Alzheimer's disease using single nucleotide polymorphisms analysis based on gradient boosting tree

特征选择 单核苷酸多态性 Boosting(机器学习) 梯度升压 人工智能 计算机科学 计算生物学 决策树 全基因组关联研究 机器学习 随机森林 模式识别(心理学) 生物 基因 遗传学 基因型
作者
Hala Ahmed,Hassan Soliman,Mohammed Elmogy
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105622-105622 被引量:12
标识
DOI:10.1016/j.compbiomed.2022.105622
摘要

Alzheimer's disease (AD) is a degenerative disorder that attacks nerve cells in the brain. AD leads to memory loss and cognitive & intellectual impairments that can influence social activities and decision-making. The most common type of human genetic variation is single nucleotide polymorphisms (SNPs). SNPs are beneficial markers of complex gene-disease. Many common and serious diseases, such as AD, have associated SNPs. Detection of SNP biomarkers linked with AD could help in the early prediction and diagnosis of this disease. The main objective of this paper is to predict and diagnose AD based on SNPs biomarkers with high classification accuracy in the early stages. One of the most concerning problems is the high number of features. Thus, the paper proposes a comprehensive framework for early AD detection and detecting the most significant genes based on SNPs analysis. Usage of machine learning (ML) techniques to identify new biomarkers of AD is also suggested. In the proposed system, two feature selection techniques are separately checked: the information gain filter and Boruta wrapper. The two feature selection techniques were used to select the most significant genes related to AD in this system. Filter methods measure the relevance of features by their correlation with dependent variables, while wrapper methods measure the usefulness of a subset of features by training a model on it. Gradient boosting tree (GBT) has been applied on all AD genetic data of neuroimaging initiative phase 1 (ADNI-1) and Whole-Genome Sequencing (WGS) datasets by using two feature selection techniques. In the whole-genome approach ADNI-1, results revealed that the GBT learning algorithm scored an overall accuracy of 99.06% in the case of using Boruta feature selection. Using information gain feature selection, the proposed system achieved an average accuracy of 94.87%. The results show that the proposed system is preferable for the early detection of AD. Also, the results revealed that the Boruta wrapper feature selection is superior to the information gain filter technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助一杯茶采纳,获得10
2秒前
居居应助ala采纳,获得10
2秒前
sniper111发布了新的文献求助10
3秒前
亓大大完成签到,获得积分10
8秒前
9秒前
充电宝应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
10秒前
深情安青应助科研通管家采纳,获得50
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
宁少爷应助科研通管家采纳,获得70
10秒前
10秒前
12秒前
拼搏老九发布了新的文献求助10
14秒前
领导范儿应助Liziuan采纳,获得10
15秒前
科研通AI2S应助可可萝oxo采纳,获得10
16秒前
不配.应助wen采纳,获得10
16秒前
风中绝悟完成签到,获得积分10
16秒前
野葱完成签到,获得积分10
17秒前
vv完成签到 ,获得积分10
19秒前
zzzzz完成签到,获得积分10
19秒前
19秒前
20秒前
我来回收数据完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
123发布了新的文献求助10
22秒前
阿弹完成签到,获得积分10
23秒前
打打应助Mayeleven采纳,获得10
23秒前
李君然完成签到,获得积分10
23秒前
Sue完成签到,获得积分10
24秒前
24秒前
安慕希发布了新的文献求助10
24秒前
一只黑麂发布了新的文献求助10
25秒前
29秒前
Sylvia完成签到,获得积分10
29秒前
30秒前
Jasper应助安慕希采纳,获得10
30秒前
我要发文章完成签到,获得积分10
31秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170097
求助须知:如何正确求助?哪些是违规求助? 2821387
关于积分的说明 7933584
捐赠科研通 2481570
什么是DOI,文献DOI怎么找? 1321908
科研通“疑难数据库(出版商)”最低求助积分说明 633434
版权声明 602579