已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Early detection of Alzheimer's disease using single nucleotide polymorphisms analysis based on gradient boosting tree

特征选择 单核苷酸多态性 Boosting(机器学习) 梯度升压 人工智能 计算机科学 计算生物学 决策树 全基因组关联研究 机器学习 随机森林 模式识别(心理学) 生物 基因 遗传学 基因型
作者
Hala Ahmed,Hassan Soliman,Mohammed Elmogy
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105622-105622 被引量:21
标识
DOI:10.1016/j.compbiomed.2022.105622
摘要

Alzheimer's disease (AD) is a degenerative disorder that attacks nerve cells in the brain. AD leads to memory loss and cognitive & intellectual impairments that can influence social activities and decision-making. The most common type of human genetic variation is single nucleotide polymorphisms (SNPs). SNPs are beneficial markers of complex gene-disease. Many common and serious diseases, such as AD, have associated SNPs. Detection of SNP biomarkers linked with AD could help in the early prediction and diagnosis of this disease. The main objective of this paper is to predict and diagnose AD based on SNPs biomarkers with high classification accuracy in the early stages. One of the most concerning problems is the high number of features. Thus, the paper proposes a comprehensive framework for early AD detection and detecting the most significant genes based on SNPs analysis. Usage of machine learning (ML) techniques to identify new biomarkers of AD is also suggested. In the proposed system, two feature selection techniques are separately checked: the information gain filter and Boruta wrapper. The two feature selection techniques were used to select the most significant genes related to AD in this system. Filter methods measure the relevance of features by their correlation with dependent variables, while wrapper methods measure the usefulness of a subset of features by training a model on it. Gradient boosting tree (GBT) has been applied on all AD genetic data of neuroimaging initiative phase 1 (ADNI-1) and Whole-Genome Sequencing (WGS) datasets by using two feature selection techniques. In the whole-genome approach ADNI-1, results revealed that the GBT learning algorithm scored an overall accuracy of 99.06% in the case of using Boruta feature selection. Using information gain feature selection, the proposed system achieved an average accuracy of 94.87%. The results show that the proposed system is preferable for the early detection of AD. Also, the results revealed that the Boruta wrapper feature selection is superior to the information gain filter technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WZH发布了新的文献求助10
4秒前
慕青应助默默采纳,获得10
5秒前
QQ糖发布了新的文献求助10
5秒前
没有昵称完成签到 ,获得积分10
6秒前
my应助pancake采纳,获得30
8秒前
文艺语蓉关注了科研通微信公众号
11秒前
12秒前
科目三应助今昔采纳,获得10
15秒前
NexusExplorer应助蓦然采纳,获得10
15秒前
殷勤的凌蝶完成签到 ,获得积分10
17秒前
轻松棉花糖完成签到 ,获得积分10
17秒前
珏珏_不是玉玉完成签到 ,获得积分10
19秒前
FX1688完成签到 ,获得积分10
20秒前
20秒前
林欢喜完成签到,获得积分10
20秒前
23秒前
WZH完成签到,获得积分10
24秒前
yuyuan完成签到,获得积分10
24秒前
25秒前
有趣的银完成签到,获得积分10
26秒前
my应助快乐的小蘑菇采纳,获得30
27秒前
文艺语蓉发布了新的文献求助10
27秒前
五月初夏发布了新的文献求助10
27秒前
aj发布了新的文献求助10
27秒前
28秒前
震动的忆雪完成签到 ,获得积分10
28秒前
艾路完成签到,获得积分10
29秒前
pkin完成签到,获得积分10
29秒前
共享精神应助小王采纳,获得30
31秒前
桐桐应助小王采纳,获得30
31秒前
搜集达人应助小王采纳,获得30
31秒前
CipherSage应助小王采纳,获得30
31秒前
脑洞疼应助小王采纳,获得30
31秒前
蓦然发布了新的文献求助10
32秒前
孑然完成签到 ,获得积分10
32秒前
33秒前
五月初夏完成签到,获得积分10
34秒前
小小fa完成签到 ,获得积分10
35秒前
小吉祥发布了新的文献求助10
35秒前
木禾发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130