Perfusion Maps Acquired From Dynamic Angiography MRI Using Deep Learning Approaches

医学 大脑中动脉 灌注 灌注扫描 核医学 血管造影 放射科 动态增强MRI 磁共振血管造影 磁共振成像 颈内动脉 冲程(发动机) 深度学习 人工智能 缺血 计算机科学 内科学 物理 热力学
作者
Muhammad Asaduddin,Hong Gee Roh,Hyun Jeong Kim,Eung Yeop Kim,Sung‐Hong Park
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (2): 456-469 被引量:6
标识
DOI:10.1002/jmri.28315
摘要

Background A typical stroke MRI protocol includes perfusion‐weighted imaging (PWI) and MR angiography (MRA), requiring a second dose of contrast agent. A deep learning method to acquire both PWI and MRA with single dose can resolve this issue. Purpose To acquire both PWI and MRA simultaneously using deep learning approaches. Study type Retrospective. Subjects A total of 60 patients (30–73 years old, 31 females) with ischemic symptoms due to occlusion or ≥50% stenosis (measured relative to proximal artery diameter) of the internal carotid artery, middle cerebral artery, or anterior cerebral artery. The 51/1/8 patient data were used as training/validation/test. Field Strength/Sequence A 3 T, time‐resolved angiography with stochastic trajectory (contrast‐enhanced MRA) and echo planar imaging (dynamic susceptibility contrast MRI, DSC‐MRI). Assessment We investigated eight different U‐Net architectures with different encoder/decoder sizes and with/without an adversarial network to generate perfusion maps from contrast‐enhanced MRA. Relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), mean transit time (MTT), and time‐to‐max (T max ) were mapped from DSC‐MRI and used as ground truth to train the networks and to generate the perfusion maps from the contrast‐enhanced MRA input. Statistical Tests Normalized root mean square error, structural similarity (SSIM), peak signal‐to‐noise ratio (pSNR), DICE, and FID scores were calculated between the perfusion maps from DSC‐MRI and contrast‐enhanced MRA. One‐tailed t ‐test was performed to check the significance of the improvements between networks. P values < 0.05 were considered significant. Results The four perfusion maps were successfully extracted using the deep learning networks. U‐net with multiple decoders and enhanced encoders showed the best performance (pSNR 24.7 ± 3.2 and SSIM 0.89 ± 0.08 for rCBV). DICE score in hypo‐perfused area showed strong agreement between the generated perfusion maps and the ground truth (highest DICE: 0.95 ± 0.04). Data Conclusion With the proposed approach, dynamic angiography MRI may provide vessel architecture and perfusion‐relevant parameters simultaneously from a single scan. Evidence Level 3 Technical Efficacy Stage 5
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助壮观梦易采纳,获得10
3秒前
周全敏完成签到 ,获得积分10
4秒前
dalei001完成签到 ,获得积分10
5秒前
6秒前
歪歪完成签到,获得积分10
7秒前
科研通AI2S应助研友_rLmrgn采纳,获得10
7秒前
8秒前
糯米种子完成签到,获得积分10
9秒前
10秒前
llllll完成签到,获得积分10
11秒前
Lyue发布了新的文献求助10
11秒前
林非鹿发布了新的文献求助30
11秒前
科目三应助苗条的寒珊采纳,获得10
14秒前
大龙哥886应助大力的问蕊采纳,获得10
15秒前
15秒前
黎娅完成签到 ,获得积分10
16秒前
mjc完成签到 ,获得积分10
17秒前
andy完成签到,获得积分10
17秒前
Orange应助ttg990720采纳,获得10
17秒前
科研通AI2S应助葡萄柚采纳,获得10
19秒前
nn完成签到,获得积分10
19秒前
英俊的铭应助幸福台灯采纳,获得10
20秒前
bingsu108完成签到,获得积分10
21秒前
21秒前
21秒前
顾矜应助楼梯口无头女孩采纳,获得10
22秒前
FashionBoy应助明理慕灵采纳,获得10
23秒前
英俊的铭应助歪歪采纳,获得10
23秒前
24秒前
25秒前
26秒前
26秒前
nan发布了新的文献求助10
26秒前
huangbing123发布了新的文献求助10
27秒前
妙手回春板蓝根完成签到,获得积分10
28秒前
29秒前
29秒前
森森发布了新的文献求助10
30秒前
科研通AI2S应助杭笑寒采纳,获得10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281