Construction of a Machine Learning Model to Estimate Physiological Variables of Speed Skating Athletes Under Hypoxic Training Conditions

速滑 运动员 最大VO2 数学 模拟 统计 物理疗法 医学 机器学习 计算机科学 心率 血压 内科学
作者
Junhao Han,Mingyang Liu,Jizu Shi,Yuguang Li
出处
期刊:Journal of Strength and Conditioning Research [Lippincott Williams & Wilkins]
卷期号:37 (7): 1543-1550 被引量:2
标识
DOI:10.1519/jsc.0000000000004058
摘要

Han, J, Liu, M, Shi, J, and Li, Y. Construction of a machine learning model to estimate physiological variables of speed skating athletes under hypoxic training conditions. J Strength Cond Res 37(7): 1543-1550, 2023-Monitoring changes in athletes' physiological variables is essential to create a safe and effective hypoxic training plan for speed skating athletes. This research aims to develop a machine learning estimation model to estimate physiological variables of athletes under hypoxic training conditions based on their physiological measurements collected at sea level. The research team recruited 64 professional speed skating athletes to participate in a 10-week training program, including 3 weeks of sea-level training, followed by 4 weeks of hypoxic training and then a 3-week sea-level recovery period. We measured several physiological variables that could reflect the athletes' oxygen transport capacity in the first 7 weeks, including red blood cell (RBC) count and hemoglobin (Hb) concentration. The physiological variables were measured once a week and then modeled as a mathematical model to estimate measurements' changes using the maximum likelihood method. The mathematical model was then used to construct a machine learning model. Furthermore, the original data (measured once per week) were used to construct a polynomial model using curve fitting. We calculated and compared the mean absolute error between estimated values of the 2 models and measured values. Our results show that the machine learning model estimated RBC count and Hb concentration accurately. The errors of the estimated values were within 5% of the measured values. Compared with the curve fitting polynomial model, the accuracy of the machine learning model in estimating hypoxic training's physiological variables is higher. This study successfully constructed a machine learning model that used physiological variables measured at the sea level to estimate the physiological variables during hypoxic training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
张一二发布了新的文献求助10
2秒前
xfy完成签到,获得积分10
3秒前
出门见喜发布了新的文献求助10
4秒前
ycg完成签到,获得积分10
5秒前
5秒前
ls完成签到,获得积分10
5秒前
李Li完成签到,获得积分10
6秒前
6秒前
秋海棠发布了新的文献求助10
7秒前
潮人完成签到 ,获得积分10
7秒前
8秒前
orixero应助迷路的手机采纳,获得10
9秒前
1231发布了新的文献求助10
10秒前
大豫通宝发布了新的文献求助10
11秒前
11秒前
13秒前
14秒前
多发paper啊完成签到,获得积分10
15秒前
LLL完成签到 ,获得积分10
15秒前
15秒前
16秒前
共享精神应助erhan7采纳,获得10
16秒前
17秒前
最爱吃火锅完成签到,获得积分10
18秒前
Song完成签到 ,获得积分10
19秒前
时尚的冰棍儿完成签到 ,获得积分10
19秒前
19秒前
jianhan发布了新的文献求助10
20秒前
所所应助1231采纳,获得10
20秒前
脑壳疼完成签到,获得积分10
21秒前
认真柠檬发布了新的文献求助10
22秒前
liv发布了新的文献求助10
22秒前
大蛋发布了新的文献求助10
23秒前
24秒前
25秒前
27秒前
27秒前
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737385
求助须知:如何正确求助?哪些是违规求助? 3281209
关于积分的说明 10023728
捐赠科研通 2997939
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782304
科研通“疑难数据库(出版商)”最低求助积分说明 749762