Entropy as Measure of Brain Networks’ Complexity in Eyes Open and Closed Conditions

睁开眼睛 脑电图 近似熵 静息状态功能磁共振成像 熵(时间箭头) 大脑活动与冥想 神经科学 计算机科学 心理学 样本熵 模式识别(心理学) 人工智能 物理 量子力学 平衡(能力)
作者
Fabrizio Vecchio,Francesca Miraglia,Chiara Pappalettera,Alessandro Orticoni,Francesca Alù,E. Judica,Maria Cotelli,Paolo Maria Rossini
出处
期刊:Symmetry [Universitas Pasundan]
卷期号:13 (11): 2178-2178 被引量:10
标识
DOI:10.3390/sym13112178
摘要

Brain complexity can be revealed even through a comparison between two trivial conditions, such as eyes open and eyes closed (EO and EC respectively) during resting. Electroencephalogram (EEG) has been widely used to investigate brain networks, and several non-linear approaches have been applied to investigate EO and EC signals modulation, both symmetric and not. Entropy is one of the approaches used to evaluate the system disorder. This study explores the differences in the EO and EC awake brain dynamics by measuring entropy. In particular, an approximate entropy (ApEn) was measured, focusing on the specific cerebral areas (frontal, central, parietal, occipital, temporal) on EEG data of 37 adult healthy subjects while resting. Each participant was submitted to an EO and an EC resting EEG recording in two separate sessions. The results showed that in the EO condition the cerebral networks of the subjects are characterized by higher values of entropy than in the EC condition. All the cerebral regions are subjected to this chaotic behavior, symmetrically in both hemispheres, proving the complexity of networks dynamics dependence from the subject brain state. Remarkable dynamics regarding cerebral networks during simple resting and awake brain states are shown by entropy. The application of this parameter can be also extended to neurological conditions, to establish and monitor personalized rehabilitation treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
advance完成签到,获得积分0
1秒前
bkagyin应助RRReol采纳,获得10
1秒前
斯文败类应助carbon采纳,获得10
2秒前
weilong完成签到,获得积分10
2秒前
昵称发布了新的文献求助10
2秒前
2秒前
刘先生发布了新的文献求助10
2秒前
3秒前
阿凉发布了新的文献求助10
3秒前
Elan发布了新的文献求助10
4秒前
Mry发布了新的文献求助10
4秒前
研友_ngJQzL发布了新的文献求助10
5秒前
Luna完成签到 ,获得积分10
5秒前
在秦岭喝豆浆的北极熊完成签到 ,获得积分10
5秒前
tz666666发布了新的文献求助20
6秒前
6秒前
Lz发布了新的文献求助10
6秒前
动听曼荷发布了新的文献求助10
8秒前
ZZZ完成签到,获得积分10
8秒前
上官若男应助kingwill采纳,获得20
9秒前
10秒前
10秒前
一一给一一的求助进行了留言
11秒前
隐形曼青应助胡豆采纳,获得10
11秒前
11秒前
12秒前
13秒前
科目三应助苹果紊采纳,获得10
13秒前
13秒前
Mry完成签到,获得积分10
13秒前
11完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
研友_ngJQzL完成签到,获得积分10
15秒前
15秒前
16秒前
Elan完成签到,获得积分10
16秒前
范范完成签到,获得积分20
17秒前
胡豆完成签到,获得积分10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226893
求助须知:如何正确求助?哪些是违规求助? 4398122
关于积分的说明 13688592
捐赠科研通 4262833
什么是DOI,文献DOI怎么找? 2339293
邀请新用户注册赠送积分活动 1336675
关于科研通互助平台的介绍 1292735