An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors

自编码 机器学习 计算机科学 人工智能 聚类分析 深度学习 毒物控制 数据挖掘 医学 医疗急救
作者
Zhengjing Ma,Gang Mei,Salvatore Cuomo
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:160: 106322-106322 被引量:84
标识
DOI:10.1016/j.aap.2021.106322
摘要

Vulnerable road users (VRUs) are exposed to the highest risk in the road traffic environment. Analyzing contributing factors that affect injury severity facilitates injury severity prediction and further application in developing countermeasures to guarantee VRUs safety. Recently, machine learning approaches have been introduced, in which analyses tend to be one-sided and may ignore important information. To solve this problem, this paper proposes a comprehensive analytic framework that employs a deep learning model referred to as the stacked sparse autoencoder (SSAE) to predict the injury severity of traffic accidents based on contributing factors. The essential idea of the method is to integrate various analyses into an analytical framework that performs corresponding data processing and analysis by different machine learning approaches. In the proposed method, first, we utilize a machine learning approach (i.e., Catboost) to analyze the importance and dependence of the contributing factors to injury severity and remove low correlation factors; second, according to the geographical information, we classify the data into different classes by utilizing a machine learning approach (i.e., k-means clustering); third, by employing high correlation factors, we employ an SSAE-based deep learning model to perform injury severity prediction in each data class. By experiments with a real-world traffic accident dataset, we demonstrated the effectiveness and applicability of the framework. Specifically, (1) the importance and dependence of contributing factors were obtained by CatBoost and the Shapley value, and (2) the SSAE-based deep learning model achieved the best performance compared to other baseline models. The proposed analytic framework can also be utilized for other accident data for severity or other risk indicator analyses involving VRUs safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
KKLJOJ发布了新的文献求助10
1秒前
刘恩文完成签到 ,获得积分10
2秒前
2秒前
七七完成签到 ,获得积分10
2秒前
2秒前
3秒前
月初发布了新的文献求助10
4秒前
5秒前
木言发布了新的文献求助10
5秒前
6秒前
shikaly发布了新的文献求助21
6秒前
无花果应助大号采纳,获得10
6秒前
是我本人发布了新的文献求助10
7秒前
7秒前
夹心完成签到,获得积分10
8秒前
白羊发布了新的文献求助10
10秒前
魏煜佳完成签到,获得积分10
10秒前
稳重雁开完成签到,获得积分20
11秒前
整齐的电源完成签到 ,获得积分10
11秒前
琉璃苣应助干净昊强采纳,获得10
11秒前
琉璃苣应助眼睛大文博采纳,获得10
12秒前
北极星162发布了新的文献求助20
12秒前
蓝莓酱完成签到,获得积分0
12秒前
万幸鹿完成签到,获得积分10
12秒前
13秒前
李静发布了新的文献求助10
13秒前
ruby完成签到,获得积分10
15秒前
16秒前
研友_VZG7GZ应助雪白起眸采纳,获得30
17秒前
17秒前
科研通AI2S应助ASZXDW采纳,获得10
17秒前
18秒前
月初完成签到,获得积分10
19秒前
19秒前
亦屿森发布了新的文献求助10
20秒前
21秒前
北极星162完成签到,获得积分10
22秒前
WKY完成签到,获得积分10
22秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046