An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors

自编码 机器学习 计算机科学 人工智能 聚类分析 深度学习 毒物控制 数据挖掘 医学 医疗急救
作者
Zhengjing Ma,Gang Mei,Salvatore Cuomo
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:160: 106322-106322 被引量:98
标识
DOI:10.1016/j.aap.2021.106322
摘要

Vulnerable road users (VRUs) are exposed to the highest risk in the road traffic environment. Analyzing contributing factors that affect injury severity facilitates injury severity prediction and further application in developing countermeasures to guarantee VRUs safety. Recently, machine learning approaches have been introduced, in which analyses tend to be one-sided and may ignore important information. To solve this problem, this paper proposes a comprehensive analytic framework that employs a deep learning model referred to as the stacked sparse autoencoder (SSAE) to predict the injury severity of traffic accidents based on contributing factors. The essential idea of the method is to integrate various analyses into an analytical framework that performs corresponding data processing and analysis by different machine learning approaches. In the proposed method, first, we utilize a machine learning approach (i.e., Catboost) to analyze the importance and dependence of the contributing factors to injury severity and remove low correlation factors; second, according to the geographical information, we classify the data into different classes by utilizing a machine learning approach (i.e., k-means clustering); third, by employing high correlation factors, we employ an SSAE-based deep learning model to perform injury severity prediction in each data class. By experiments with a real-world traffic accident dataset, we demonstrated the effectiveness and applicability of the framework. Specifically, (1) the importance and dependence of contributing factors were obtained by CatBoost and the Shapley value, and (2) the SSAE-based deep learning model achieved the best performance compared to other baseline models. The proposed analytic framework can also be utilized for other accident data for severity or other risk indicator analyses involving VRUs safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柴火烧叽发布了新的文献求助10
1秒前
香蕉觅云应助内向秋寒采纳,获得10
1秒前
2秒前
2秒前
zyh完成签到,获得积分10
2秒前
2秒前
小马甲应助Anxinxin采纳,获得10
2秒前
ww发布了新的文献求助10
2秒前
这小猪真帅完成签到,获得积分10
3秒前
Hulda完成签到,获得积分10
3秒前
可靠访蕊完成签到 ,获得积分10
4秒前
深情安青应助科研小白采纳,获得10
4秒前
八八完成签到,获得积分20
5秒前
请叫我风吹麦浪应助AIA7采纳,获得10
5秒前
智齿怪物一号完成签到,获得积分10
5秒前
舒适山槐完成签到,获得积分10
5秒前
HJJHJH发布了新的文献求助10
5秒前
易哒哒发布了新的文献求助10
5秒前
ZZZpp完成签到,获得积分10
6秒前
大个应助756采纳,获得10
7秒前
8秒前
喵呜发布了新的文献求助10
8秒前
Ava应助k7采纳,获得10
8秒前
领导范儿应助cc采纳,获得10
8秒前
橘子发布了新的文献求助40
8秒前
8秒前
benben完成签到,获得积分10
9秒前
wjq完成签到,获得积分10
9秒前
9秒前
10秒前
亓亓完成签到 ,获得积分10
10秒前
10秒前
phz发布了新的文献求助10
11秒前
11秒前
Stephen完成签到,获得积分10
11秒前
shengChen完成签到,获得积分10
11秒前
11秒前
怎么睡不醒完成签到 ,获得积分10
11秒前
CipherSage应助沉静的迎荷采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794