An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors

自编码 机器学习 计算机科学 人工智能 聚类分析 深度学习 毒物控制 数据挖掘 医学 医疗急救
作者
Zhengjing Ma,Gang Mei,Salvatore Cuomo
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:160: 106322-106322 被引量:98
标识
DOI:10.1016/j.aap.2021.106322
摘要

Vulnerable road users (VRUs) are exposed to the highest risk in the road traffic environment. Analyzing contributing factors that affect injury severity facilitates injury severity prediction and further application in developing countermeasures to guarantee VRUs safety. Recently, machine learning approaches have been introduced, in which analyses tend to be one-sided and may ignore important information. To solve this problem, this paper proposes a comprehensive analytic framework that employs a deep learning model referred to as the stacked sparse autoencoder (SSAE) to predict the injury severity of traffic accidents based on contributing factors. The essential idea of the method is to integrate various analyses into an analytical framework that performs corresponding data processing and analysis by different machine learning approaches. In the proposed method, first, we utilize a machine learning approach (i.e., Catboost) to analyze the importance and dependence of the contributing factors to injury severity and remove low correlation factors; second, according to the geographical information, we classify the data into different classes by utilizing a machine learning approach (i.e., k-means clustering); third, by employing high correlation factors, we employ an SSAE-based deep learning model to perform injury severity prediction in each data class. By experiments with a real-world traffic accident dataset, we demonstrated the effectiveness and applicability of the framework. Specifically, (1) the importance and dependence of contributing factors were obtained by CatBoost and the Shapley value, and (2) the SSAE-based deep learning model achieved the best performance compared to other baseline models. The proposed analytic framework can also be utilized for other accident data for severity or other risk indicator analyses involving VRUs safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灯灯发布了新的文献求助10
刚刚
1秒前
梁婷发布了新的文献求助10
1秒前
洪伟完成签到,获得积分10
1秒前
吃饭了没完成签到,获得积分10
2秒前
脑洞疼应助星星采纳,获得10
2秒前
3秒前
柯浩天发布了新的文献求助10
3秒前
陈德驳回了Rubby应助
3秒前
MTF完成签到,获得积分10
3秒前
4秒前
等风的人发布了新的文献求助10
4秒前
samantha完成签到 ,获得积分10
4秒前
游标卡尺完成签到,获得积分10
5秒前
华仔应助梁婷采纳,获得10
6秒前
yls123发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
Zzjinyu发布了新的文献求助10
8秒前
8秒前
老迟到的迎夏完成签到,获得积分10
9秒前
兔兔不睡觉完成签到 ,获得积分10
9秒前
超帅的豪英完成签到,获得积分10
9秒前
高大头发布了新的文献求助10
10秒前
徐彬荣完成签到 ,获得积分10
10秒前
ballistic完成签到,获得积分10
10秒前
something发布了新的文献求助10
10秒前
10秒前
10秒前
Wayne_Sun发布了新的文献求助10
11秒前
MTF发布了新的文献求助10
11秒前
11秒前
11秒前
CR7应助钱多多采纳,获得20
11秒前
12秒前
桐桐应助jinjinj采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
小米发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958799
求助须知:如何正确求助?哪些是违规求助? 3504983
关于积分的说明 11121652
捐赠科研通 3236440
什么是DOI,文献DOI怎么找? 1788768
邀请新用户注册赠送积分活动 871373
科研通“疑难数据库(出版商)”最低求助积分说明 802723