亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors

自编码 机器学习 计算机科学 人工智能 聚类分析 深度学习 毒物控制 数据挖掘 医学 医疗急救
作者
Zhengjing Ma,Gang Mei,Salvatore Cuomo
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:160: 106322-106322 被引量:98
标识
DOI:10.1016/j.aap.2021.106322
摘要

Vulnerable road users (VRUs) are exposed to the highest risk in the road traffic environment. Analyzing contributing factors that affect injury severity facilitates injury severity prediction and further application in developing countermeasures to guarantee VRUs safety. Recently, machine learning approaches have been introduced, in which analyses tend to be one-sided and may ignore important information. To solve this problem, this paper proposes a comprehensive analytic framework that employs a deep learning model referred to as the stacked sparse autoencoder (SSAE) to predict the injury severity of traffic accidents based on contributing factors. The essential idea of the method is to integrate various analyses into an analytical framework that performs corresponding data processing and analysis by different machine learning approaches. In the proposed method, first, we utilize a machine learning approach (i.e., Catboost) to analyze the importance and dependence of the contributing factors to injury severity and remove low correlation factors; second, according to the geographical information, we classify the data into different classes by utilizing a machine learning approach (i.e., k-means clustering); third, by employing high correlation factors, we employ an SSAE-based deep learning model to perform injury severity prediction in each data class. By experiments with a real-world traffic accident dataset, we demonstrated the effectiveness and applicability of the framework. Specifically, (1) the importance and dependence of contributing factors were obtained by CatBoost and the Shapley value, and (2) the SSAE-based deep learning model achieved the best performance compared to other baseline models. The proposed analytic framework can also be utilized for other accident data for severity or other risk indicator analyses involving VRUs safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
oleskarabach完成签到,获得积分20
18秒前
量子星尘发布了新的文献求助10
29秒前
38秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Zoom应助Criminology34采纳,获得50
1分钟前
朝俞发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助朝俞采纳,获得10
2分钟前
2分钟前
bkagyin应助科研通管家采纳,获得30
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
2分钟前
斯文的葶发布了新的文献求助10
2分钟前
善学以致用应助斯文的葶采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
CipherSage应助zfr662采纳,获得10
3分钟前
3分钟前
左肩微笑完成签到,获得积分20
3分钟前
zfr662发布了新的文献求助10
3分钟前
flyinthesky完成签到,获得积分10
3分钟前
852应助健壮熊猫采纳,获得10
3分钟前
HC完成签到,获得积分10
3分钟前
张晓祁完成签到,获得积分10
4分钟前
yueying完成签到,获得积分10
4分钟前
钱邦国完成签到 ,获得积分10
4分钟前
温暖的夏波完成签到,获得积分10
4分钟前
道元完成签到,获得积分10
4分钟前
彩虹儿应助科研通管家采纳,获得10
4分钟前
Criminology34发布了新的文献求助100
4分钟前
4分钟前
caca完成签到,获得积分0
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944838
求助须知:如何正确求助?哪些是违规求助? 4209584
关于积分的说明 13085511
捐赠科研通 3989490
什么是DOI,文献DOI怎么找? 2184138
邀请新用户注册赠送积分活动 1199488
关于科研通互助平台的介绍 1112590