An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors

自编码 机器学习 计算机科学 人工智能 聚类分析 深度学习 毒物控制 数据挖掘 医学 医疗急救
作者
Zhengjing Ma,Gang Mei,Salvatore Cuomo
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:160: 106322-106322 被引量:144
标识
DOI:10.1016/j.aap.2021.106322
摘要

Vulnerable road users (VRUs) are exposed to the highest risk in the road traffic environment. Analyzing contributing factors that affect injury severity facilitates injury severity prediction and further application in developing countermeasures to guarantee VRUs safety. Recently, machine learning approaches have been introduced, in which analyses tend to be one-sided and may ignore important information. To solve this problem, this paper proposes a comprehensive analytic framework that employs a deep learning model referred to as the stacked sparse autoencoder (SSAE) to predict the injury severity of traffic accidents based on contributing factors. The essential idea of the method is to integrate various analyses into an analytical framework that performs corresponding data processing and analysis by different machine learning approaches. In the proposed method, first, we utilize a machine learning approach (i.e., Catboost) to analyze the importance and dependence of the contributing factors to injury severity and remove low correlation factors; second, according to the geographical information, we classify the data into different classes by utilizing a machine learning approach (i.e., k-means clustering); third, by employing high correlation factors, we employ an SSAE-based deep learning model to perform injury severity prediction in each data class. By experiments with a real-world traffic accident dataset, we demonstrated the effectiveness and applicability of the framework. Specifically, (1) the importance and dependence of contributing factors were obtained by CatBoost and the Shapley value, and (2) the SSAE-based deep learning model achieved the best performance compared to other baseline models. The proposed analytic framework can also be utilized for other accident data for severity or other risk indicator analyses involving VRUs safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单绯发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助30
1秒前
桐桐应助聪慧紫蓝采纳,获得10
1秒前
tang应助zz采纳,获得10
1秒前
悦耳难摧发布了新的文献求助10
2秒前
nuo发布了新的文献求助20
2秒前
lilili完成签到,获得积分10
2秒前
快快快快快快快快快完成签到 ,获得积分10
3秒前
zky关闭了zky文献求助
3秒前
amazeman111发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
Christina发布了新的文献求助30
4秒前
4秒前
lilili发布了新的文献求助10
5秒前
5秒前
xingxing发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
www发布了新的文献求助10
6秒前
香蕉觅云应助激昂的幻梦采纳,获得10
6秒前
6秒前
willen完成签到,获得积分10
7秒前
大个应助小皮艇采纳,获得10
7秒前
晒晒发布了新的文献求助10
7秒前
活着完成签到 ,获得积分10
8秒前
8秒前
李健的小迷弟应助帅玉玉采纳,获得10
8秒前
xxh完成签到,获得积分10
8秒前
9秒前
9秒前
平常丝发布了新的文献求助10
9秒前
vz7发布了新的文献求助10
10秒前
qbxiaojie完成签到,获得积分10
10秒前
思源应助勤恳万宝路采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095