Method for making multi-attribute decisions in wargames by combining intuitionistic fuzzy numbers with reinforcement learning

强化学习 计算机科学 人工智能 领域(数学) 趋同(经济学) 机器学习 功能(生物学) 人工神经网络 模糊逻辑 智能代理 数学 经济增长 进化生物学 生物 经济 纯数学
作者
Sun Yan,Bo Yuan,Yufan Xue,Jiawei Zhou,Xiaoyu Zhang,Xianzhong Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2109.02354
摘要

Researchers are increasingly focusing on intelligent games as a hot research area.The article proposes an algorithm that combines the multi-attribute management and reinforcement learning methods, and that combined their effect on wargaming, it solves the problem of the agent's low rate of winning against specific rules and its inability to quickly converge during intelligent wargame training.At the same time, this paper studied a multi-attribute decision making and reinforcement learning algorithm in a wargame simulation environment, and obtained data on red and blue conflict.Calculate the weight of each attribute based on the intuitionistic fuzzy number weight calculations. Then determine the threat posed by each opponent's chess pieces.Using the red side reinforcement learning reward function, the AC framework is trained on the reward function, and an algorithm combining multi-attribute decision-making with reinforcement learning is obtained. A simulation experiment confirms that the algorithm of multi-attribute decision-making combined with reinforcement learning presented in this paper is significantly more intelligent than the pure reinforcement learning algorithm.By resolving the shortcomings of the agent's neural network, coupled with sparse rewards in large-map combat games, this robust algorithm effectively reduces the difficulties of convergence. It is also the first time in this field that an algorithm design for intelligent wargaming combines multi-attribute decision making with reinforcement learning.Attempt interdisciplinary cross-innovation in the academic field, like designing intelligent wargames and improving reinforcement learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助sharon采纳,获得10
2秒前
111发布了新的文献求助10
6秒前
完美大神完成签到 ,获得积分10
9秒前
Zjx关闭了Zjx文献求助
9秒前
希望天下0贩的0应助ii采纳,获得10
11秒前
大个应助乱武采纳,获得10
11秒前
12秒前
14秒前
浪客完成签到 ,获得积分10
14秒前
15秒前
古月发布了新的文献求助10
17秒前
echo发布了新的文献求助10
19秒前
wen_xxx发布了新的文献求助10
21秒前
lty发布了新的文献求助10
21秒前
22秒前
SONNG完成签到,获得积分10
23秒前
sharon完成签到,获得积分10
25秒前
26秒前
ii发布了新的文献求助10
27秒前
今后应助起名字好难采纳,获得10
27秒前
28秒前
zhangyu应助豆豆采纳,获得10
34秒前
打打应助结实的路灯采纳,获得10
34秒前
一二完成签到,获得积分10
35秒前
xuyang发布了新的文献求助10
36秒前
36秒前
Whassupww完成签到,获得积分10
36秒前
37秒前
海孩子发布了新的文献求助10
38秒前
jingxian发布了新的文献求助10
39秒前
Hello应助初见采纳,获得10
40秒前
41秒前
重要的班完成签到,获得积分20
41秒前
42秒前
44秒前
温米发布了新的文献求助10
44秒前
温暖的沛凝完成签到 ,获得积分10
46秒前
火星上鑫鹏完成签到,获得积分10
47秒前
西门子云发布了新的文献求助10
48秒前
49秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662