Method for making multi-attribute decisions in wargames by combining intuitionistic fuzzy numbers with reinforcement learning

强化学习 计算机科学 人工智能 领域(数学) 趋同(经济学) 机器学习 功能(生物学) 人工神经网络 模糊逻辑 智能代理 数学 经济增长 进化生物学 生物 经济 纯数学
作者
Sun Yan,Bo Yuan,Yufan Xue,Jiawei Zhou,Xiaoyu Zhang,Xianzhong Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2109.02354
摘要

Researchers are increasingly focusing on intelligent games as a hot research area.The article proposes an algorithm that combines the multi-attribute management and reinforcement learning methods, and that combined their effect on wargaming, it solves the problem of the agent's low rate of winning against specific rules and its inability to quickly converge during intelligent wargame training.At the same time, this paper studied a multi-attribute decision making and reinforcement learning algorithm in a wargame simulation environment, and obtained data on red and blue conflict.Calculate the weight of each attribute based on the intuitionistic fuzzy number weight calculations. Then determine the threat posed by each opponent's chess pieces.Using the red side reinforcement learning reward function, the AC framework is trained on the reward function, and an algorithm combining multi-attribute decision-making with reinforcement learning is obtained. A simulation experiment confirms that the algorithm of multi-attribute decision-making combined with reinforcement learning presented in this paper is significantly more intelligent than the pure reinforcement learning algorithm.By resolving the shortcomings of the agent's neural network, coupled with sparse rewards in large-map combat games, this robust algorithm effectively reduces the difficulties of convergence. It is also the first time in this field that an algorithm design for intelligent wargaming combines multi-attribute decision making with reinforcement learning.Attempt interdisciplinary cross-innovation in the academic field, like designing intelligent wargames and improving reinforcement learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良的道消完成签到,获得积分10
1秒前
1秒前
1秒前
乐乐应助自觉的夏之采纳,获得10
1秒前
2秒前
shenle发布了新的文献求助10
2秒前
2秒前
Baccano发布了新的文献求助10
2秒前
月亮球发布了新的文献求助10
3秒前
科研新秀z发布了新的文献求助30
3秒前
活力的绮晴完成签到,获得积分20
3秒前
3秒前
4秒前
SunK1876完成签到,获得积分10
4秒前
科研通AI2S应助舒心宛白采纳,获得10
5秒前
今后应助高兴的故事采纳,获得10
6秒前
wwww发布了新的文献求助10
6秒前
6秒前
大头发布了新的文献求助10
7秒前
7秒前
7秒前
科研通AI2S应助风行采纳,获得10
7秒前
纪不愁完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
不配.应助勤恳怀梦采纳,获得10
8秒前
10秒前
杰森斯坦虎完成签到,获得积分10
10秒前
大方马里奥关注了科研通微信公众号
10秒前
体贴水风发布了新的文献求助10
10秒前
月亮球完成签到,获得积分20
11秒前
自信眼睛发布了新的文献求助10
11秒前
12秒前
12秒前
卷网那个发布了新的文献求助10
13秒前
栗贞完成签到,获得积分10
13秒前
zjq发布了新的文献求助10
13秒前
感动短靴完成签到,获得积分20
13秒前
iNk应助xxp采纳,获得20
14秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
The Data Economy: Tools and Applications 1000
Diamonds: Properties, Synthesis and Applications 800
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3096956
求助须知:如何正确求助?哪些是违规求助? 2749008
关于积分的说明 7602475
捐赠科研通 2400798
什么是DOI,文献DOI怎么找? 1273694
科研通“疑难数据库(出版商)”最低求助积分说明 615878
版权声明 598999