Method for making multi-attribute decisions in wargames by combining intuitionistic fuzzy numbers with reinforcement learning

强化学习 计算机科学 人工智能 领域(数学) 趋同(经济学) 机器学习 功能(生物学) 人工神经网络 模糊逻辑 数学 经济增长 进化生物学 生物 经济 纯数学
作者
Yuxiang Sun,Bo Yuan,Yufan Xue,Jiawei Zhou,Xiaoyu Zhang,Xianzhong Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2109.02354
摘要

Researchers are increasingly focusing on intelligent games as a hot research area.The article proposes an algorithm that combines the multi-attribute management and reinforcement learning methods, and that combined their effect on wargaming, it solves the problem of the agent's low rate of winning against specific rules and its inability to quickly converge during intelligent wargame training.At the same time, this paper studied a multi-attribute decision making and reinforcement learning algorithm in a wargame simulation environment, and obtained data on red and blue conflict.Calculate the weight of each attribute based on the intuitionistic fuzzy number weight calculations. Then determine the threat posed by each opponent's chess pieces.Using the red side reinforcement learning reward function, the AC framework is trained on the reward function, and an algorithm combining multi-attribute decision-making with reinforcement learning is obtained. A simulation experiment confirms that the algorithm of multi-attribute decision-making combined with reinforcement learning presented in this paper is significantly more intelligent than the pure reinforcement learning algorithm.By resolving the shortcomings of the agent's neural network, coupled with sparse rewards in large-map combat games, this robust algorithm effectively reduces the difficulties of convergence. It is also the first time in this field that an algorithm design for intelligent wargaming combines multi-attribute decision making with reinforcement learning.Attempt interdisciplinary cross-innovation in the academic field, like designing intelligent wargames and improving reinforcement learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
共享精神应助自由妙竹采纳,获得10
2秒前
ghfgjjf完成签到 ,获得积分10
4秒前
SUNINE发布了新的文献求助10
4秒前
繁荣的从露完成签到,获得积分10
5秒前
大模型应助zy采纳,获得10
5秒前
capx完成签到,获得积分10
6秒前
111哩发布了新的文献求助10
6秒前
6秒前
7秒前
JunHan发布了新的文献求助10
7秒前
Tail完成签到,获得积分10
9秒前
wwwwwl完成签到 ,获得积分10
10秒前
11秒前
Tail发布了新的文献求助20
12秒前
13秒前
13秒前
天地一沙鸥完成签到,获得积分10
14秒前
奇遇里完成签到 ,获得积分10
14秒前
1r发布了新的文献求助10
15秒前
15秒前
15秒前
英俊的铭应助花陵采纳,获得10
17秒前
18秒前
小王完成签到,获得积分10
18秒前
chenhuiyu完成签到,获得积分10
20秒前
Lucas应助羊羊青采纳,获得10
21秒前
22秒前
量子星尘发布了新的文献求助30
23秒前
徐先生1106完成签到,获得积分10
23秒前
桐桐应助SUNINE采纳,获得10
23秒前
核桃应助科研通管家采纳,获得30
23秒前
微糖应助科研通管家采纳,获得10
23秒前
23秒前
Owen应助科研通管家采纳,获得10
23秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
ding应助科研通管家采纳,获得10
24秒前
核桃应助科研通管家采纳,获得30
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071