Method for making multi-attribute decisions in wargames by combining intuitionistic fuzzy numbers with reinforcement learning

强化学习 计算机科学 人工智能 领域(数学) 趋同(经济学) 机器学习 功能(生物学) 人工神经网络 模糊逻辑 数学 经济增长 进化生物学 生物 经济 纯数学
作者
Yuxiang Sun,Bo Yuan,Yufan Xue,Jiawei Zhou,Xiaoyu Zhang,Xianzhong Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2109.02354
摘要

Researchers are increasingly focusing on intelligent games as a hot research area.The article proposes an algorithm that combines the multi-attribute management and reinforcement learning methods, and that combined their effect on wargaming, it solves the problem of the agent's low rate of winning against specific rules and its inability to quickly converge during intelligent wargame training.At the same time, this paper studied a multi-attribute decision making and reinforcement learning algorithm in a wargame simulation environment, and obtained data on red and blue conflict.Calculate the weight of each attribute based on the intuitionistic fuzzy number weight calculations. Then determine the threat posed by each opponent's chess pieces.Using the red side reinforcement learning reward function, the AC framework is trained on the reward function, and an algorithm combining multi-attribute decision-making with reinforcement learning is obtained. A simulation experiment confirms that the algorithm of multi-attribute decision-making combined with reinforcement learning presented in this paper is significantly more intelligent than the pure reinforcement learning algorithm.By resolving the shortcomings of the agent's neural network, coupled with sparse rewards in large-map combat games, this robust algorithm effectively reduces the difficulties of convergence. It is also the first time in this field that an algorithm design for intelligent wargaming combines multi-attribute decision making with reinforcement learning.Attempt interdisciplinary cross-innovation in the academic field, like designing intelligent wargames and improving reinforcement learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dalin完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
Dr.L完成签到,获得积分10
4秒前
拉拉完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
CarolineSH完成签到 ,获得积分10
5秒前
SciGPT应助王翔采纳,获得10
5秒前
hd完成签到,获得积分10
5秒前
wansida完成签到,获得积分10
7秒前
浮游应助kukuku采纳,获得10
8秒前
xumengsuo发布了新的文献求助10
8秒前
乐乐发布了新的文献求助10
8秒前
天天快乐应助3100采纳,获得10
9秒前
czq发布了新的文献求助10
9秒前
9秒前
10秒前
陈玉发布了新的文献求助10
11秒前
11秒前
程雯慧发布了新的文献求助10
12秒前
xh发布了新的文献求助10
12秒前
13秒前
15秒前
云望发布了新的文献求助10
15秒前
15秒前
WN发布了新的文献求助10
18秒前
18秒前
llll完成签到 ,获得积分0
19秒前
20秒前
20秒前
拉拉关注了科研通微信公众号
22秒前
王翔发布了新的文献求助10
22秒前
充电宝应助可靠冥幽采纳,获得10
23秒前
李健应助云望采纳,获得10
23秒前
情怀应助xumengsuo采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061232
求助须知:如何正确求助?哪些是违规求助? 4285332
关于积分的说明 13354142
捐赠科研通 4103141
什么是DOI,文献DOI怎么找? 2246531
邀请新用户注册赠送积分活动 1252193
关于科研通互助平台的介绍 1183040