全视子
工作流程
计算机科学
管道(软件)
分割
探测器
人工智能
变压器
电信
工程类
电气工程
数据库
社会学
程序设计语言
人类学
电压
兄弟
作者
Zhiqi Li,Wenhai Wang,Enze Xie,Zhiding Yu,Animashree Anandkumar,Jose M. Alvarez,Tong Lu,Ping Luo
出处
期刊:arXiv: Computer Vision and Pattern Recognition
日期:2021-09-08
摘要
We present Panoptic SegFormer, a general framework for end-to-end panoptic
segmentation with Transformers. The proposed method extends Deformable DETR
with a unified mask prediction workflow for both things and stuff, making the
panoptic segmentation pipeline concise and effective. With a ResNet-50
backbone, our method achieves 50.0\% PQ on the COCO test-dev split, surpassing
previous state-of-the-art methods by significant margins without bells and
whistles. Using a more powerful PVTv2-B5 backbone, Panoptic-SegFormer achieves
a new record of 54.1\%PQ and 54.4\% PQ on the COCO val and test-dev splits with
single scale input.
科研通智能强力驱动
Strongly Powered by AbleSci AI